DOI QR코드

DOI QR Code

미분방정식 지도에 대한 소고

On a direction in the teaching of differential equations

  • Park, Jeanam (Department of mathematics education, Inha University) ;
  • Jang, Dongsook (Department of mathematics, Inha University)
  • 투고 : 2014.04.22
  • 심사 : 2014.05.29
  • 발행 : 2014.09.30

초록

본 연구에서는 2009 개정 교육과정에 따른 수학과 교육과정에서 도입한 미분방정식 지도를 위한 수학적 모델링을 소개한다. 2014년에 1개 출판사만으로 출간된 '고급수학 II'의 교과서는 이계미분방정식 y"+y=0의 풀이를 거듭제곱 급수 방법을 사용하고 있다. 이에 따른 문제점을 알아보고 그 대안을 제시한다. 또한, 고급수학 II 교과서는 기계적 시스템을 다루고 있지만 전기적 시스템은 다루지 않고 있다. 따라서 교과서에서 다루는 일 계미분방정식을 전기회로로 지도하는 방안을 제시한다. 끝으로 미분방정식 지도와 관련된 용어를 제시한다.

In this paper we introduce mathematical modellings in teaching and learning differential equations which were adopted by 2009 revised curriculum. The textbook of 'Advanced Mathematics II' published in 2014 with one publisher includes the content of the second order differential equation y"+y=0 by the power series method. This paper discusses the issue of the power series and gives an alternative method to explain problems of differential equation. Also, we found that the textbook of 'Advanced Mathematics II' used the mechanical system not electrical system in solving differential equation problems. Thus this paper suggests a method using an electric circuit in teaching and learning the first order differential equation. Finally we suggest some terminologies in the teaching and learning of differential equations.

키워드

참고문헌

  1. 곽성일.류상호.김대규.안중제.이옥수.김재혁.남경식.김익수 (2011a). 물리 I, 서울: 천재교육.
  2. 곽성일.류상호.김대규.안중제.이옥수.김재혁.남경식.김익수 (2011b). 물리 II, 서울: 천재교육.
  3. 교육과학기술부 (2011). 수학과 교육과정(교육과학 기술부 고시 제 2011-361호 별책8).
  4. 권오남 (2004). 미분방정식 교수-학습의 RME 이론 적용 및 효과 분석, 서울: 한국연구재단.
  5. 류희찬.조완영.이정례.선우하식.이진호.손홍찬.신보미.조정묵.이병만.김용식.임미선.선미향.유익승.한명주.박원균.남선주.김명수.정성윤 (2014). 고등학교 고급수학 II. 서울: 천재교과서.
  6. 문교부 (1988). 고등학교 수학과 교육과정 해설, 문교부 고시 제88-7호.
  7. 신항균.이광연.박세원.신범영.이계세.김정화.박문환.윤정호.박상의.서원호.전제동.이동흔 (2014). 고등학교 미적분 I, 서울: 지학사.
  8. 양승갑.이성길.배종숙 (1995). 고등학교 수학 II. 서울: 금성출판사.
  9. 우정호.박교식.이종희.박경미.김남희.임재훈.권석일.남진영.김진환.강현영.이형주.박재희.전철.오혜미.김상철.설은선.황수영.김민경.최인선.고현주.이정연.최은자.김기연.윤혜미.천화정 (2014). 미적분 II, 서울: 두산동아.
  10. 우정호.박교식.박경미.이경화.김남희.임재훈.최남광.송은영 (2009). 수학 II, 서울: 두산동아.
  11. 정상권.이재학.박혜숙.홍진곤.박부성.최홍원.민진원.김호경 (2014). 미적분 II, 서울: 금성출판사.
  12. 한국과학창의재단 (2011). 2009 개정 교육과정에 따른 수학과 교육과정 연구.
  13. Ang, K. C. (2001). Teaching mathematical modeling in Singapore schools, The Mathematics Educator, 6(1), 62-74.
  14. Ang, K. C. & Neo, K. S. (2005). Real-life application of a simple continum traffic flow model. Int. J. of Mathematical Education in Science and Technology, 36(8), 913-956. https://doi.org/10.1080/00207390500064338
  15. Arzarello, F., Ferrara, F. & Robutti, O. (2012). Mathematical modelling with technology: the role of dynamic representation. Teaching Mathematics and Its Applications, 31(1), 20-30. https://doi.org/10.1093/teamat/hrr027
  16. Blanchard, P. (1994). Teaching differential equations with a dynamical systems viewpoint. College Math J. 25, 385-395. https://doi.org/10.2307/2687503
  17. Boyce, W. & DiPrima, R. (2010). Elementary differential equations and boundary value problems, 9th ed., New York: Wiley.
  18. Brenner, J. L. (1988). An elementary approach to y" = -y. Amer. Math. Monthly, 95, 344.
  19. Charpin, J., O'Hara, S. & Mackey, S. (2013). Mathematical modeling at secondary school: the MACSI-Clongowes Wood College experience. International Journal of Mathematical Education in Science and Technology, 44(8), 1175-1190. https://doi.org/10.1080/0020739X.2012.756552
  20. Friedberg, S., Inse, A. & Spence. L. (2003). Linear algebra, 4th ed. New Jersey: Prentice Hall.
  21. Hubbard, J. H. (1994). What it means to understand a differential equation. College Math. J. 25(5), 372-384. https://doi.org/10.2307/2687502
  22. Ju, M.-K. & Kwon, O. N. (2004). Analysis of students' use of metapher: The case of a RME-based differential equations course. J. Korea Soc. Math. Ed. Ser. D: Research in Mathematical Education, 8(1), 19-30.
  23. Kreyszig, E. (2011). Advanced engineering mathematics, 10th. ed., New York: Wiley.
  24. Kwon, O. N. (2002). Conceptualizing the realistic mathematics education approach in the teaching and learning of ordinary differential equations. Journal of the Korea Society of Mathematical Education Series D: Research in Mathematical Education, 6(2), 159-170.
  25. Kwon, O. N. (2003). Guided reinvention of Euler algorithm: An analysis of progressive mathematization in RME-based differential equations course. J . Korea Soc. Math. Ed. Ser. A: The Mathematical Education, 42(3), 387-402.
  26. Lomen, D. & Lovelock, D. (1999). Differential equations: graphics.model.data, New York: Wiley.
  27. Rasmussen, C. L. (2001). New directions in differential equations a framework for interpreting students' understanding and difficulties. Journal of Mathematical Behavior, 20, 55-87. https://doi.org/10.1016/S0732-3123(01)00062-1
  28. Roe, J. (1980). A characterization of the sine function. Math. Proc. Camb. Phil. Soc. 87, 69-73. https://doi.org/10.1017/S030500410005653X
  29. Schichl, H. (2004). Models and the history of modeling. Applied Optimization, 88, 25-36. https://doi.org/10.1007/978-1-4613-0215-5_2
  30. Stillman, G., Galbraith, P., Brown, J., & Edwards, I. (2007). A framework for success in implementing mathematical modeling in the secondary school. In J. Watson & K. Beswick (Eds.), Proc. 30th Annual Conf. of the Mathematics Education Research Group of Australasis (MERGA) (Vol.2, pp.688-690). Adelaide: MERGA.
  31. Warwick, J. (2007). Some reflections on the teaching of mathematical modeling. The Mathematics Educator, 17(1), 32-41.
  32. Zill, D. & Wright, W. (2012). Advanced engineering mathematics, 5th ed., Boston: Jones & Bartlett Pub.