
http://dx.doi.org/10.7737/JKORMS.2014.39.3.083

논문접수일：2014년 06월 20일 논문게재확정일：2014년 08월 06일

논문수정일(1차：2014년 08월 05일)

* This study was financially supported by the research fund of Chungnam National University in 2014.

†교신저자 pmj0684@khu.ac.kr

순서 독립적인 셋업타임을 가진 동일작업의

병렬기계 배치스케줄링*

최병천
1
․박명주

2†

1
충남대학교 경영학부,

2
경희대학교 산업경영공학과

Parallel Machine Scheduling with Identical Jobs and

Sequence-Independent Setup Times

Byung-Cheon Choi1․Myoung-Ju Park2

1
Department of Business Administration, Chungnam National University

2
Department of Industrial and Management Systems Engineering, Kyung Hee University

Abstract

We consider the problem of scheduling identical jobs with sequence-independent setup times on parallel machines.

The objective is to minimize total completion times. We present the pseudopolynomial-time algorithm for the case

with a fixed number of machines and an efficient approximation algorithm for our problem with identical setup times,

which is known to be NP-hard even for the two-machine case.

Keywords：Batch Scheduling, Setup Times, Parallel Machine

1. Problem Definition

Batch scheduling problems with setup times

have been studied extensively [2, 3]. In this pa-

per, we consider a particular batch scheduling

problem that can be stated as follows. Suppose

we have a set of  jobs to be scheduled on 

parallel machines, where each job belongs to

some batch. Batch scheduling problems are cha-

racterized by a setup time that is only required

한국경영과학회지
제39권 제3호
2014년 9월

84 최병천․박명주

between jobs from different batches. Each batch

g has its own set of  jobs, 
    ⋯

,     ⋯  Note that ∑    . Let 

be the processing time of ,    ⋯  ,  

  ⋯ . In our problem, the processing time of

each job is identical, that is,   ,    ⋯,

 ,     ⋯ . Let  = ( ,  , …, ) be the

schedule such that  is the subsequence of jobs

assigned to machine ,    ⋯ . Let   be

the -th job in  ,    ⋯ . Let  be the

completion time of  in . Let  be the setup

time required to process a job in batch g follow-

ing a job in a different batch. Note that if a job

follows a member of the same batch, then a setup

time is not required. The objective is to find a

schedule  to minimize total completion times,

  ∑   ∑    
 . Let this problem be re-

ferred to as Problem P.

Cheng and Chen [5] showed that Problem P

is NP-hard even for the two-machine case with

unit length jobs, that is,   . Webster [7]

showed that Problem P is unary NP-hard even

for the case in which each job of the same batch

has the same processing time, that is,    .

Liu et al. [6] considered the two-machine case

of Problem P and presented a pseudopolyno-

mial-time algorithm for the case with unit length

jobs and an NP-hardness proof for the case with

unit length jobs and identical setup times, that

is,   . Webster and Azzioglu [8] presented two

dynamic programming algorithms for Problem P

with arbitrary processing times whose objective

is to minimize the total weighted flow time. In

this paper, we present a pseudopolynomial-time

algorithm with better complexity than that in [8]

for Problem P with a fixed number of machines

and an efficient approximation algorithm for

Problem P with identical setup times.

2. Problem P

In this section, we introduce an optimality con-

dition and present a pseudopolynomial-time al-

gorithm for Problem P with a fixed number of

machines.

2.1 Optimality Condition

In this subsection, we present an optimality

condition that is used later to develop a pseudo-

polynomial-time algorithm.

First, we introduce some terminology and the

known result. Let batch g be referred to as a split

batch if it has at least two setups and let the

schedule with no split batches be referred to as

a group technology (GT) schedule. Note that in

the GT schedule, each batch has exactly one

setup. Consider a schedule  = ( ,  , …, )

such that for    ⋯  :

• Let  be the number of batches allocated

to  ;

• Let       ⋯    be the sequence

of the batches allocated to  ;

• Let   
  

  ⋯ 
 , where 

 

is the set of jobs in batch   in  .

Proposition 1 [4] There exists an optimal sche-

dule  for the single-machine case of Problem

P such that  is a GT schedule and









≤







≤ ⋯ ≤





 ,

where 
 is the cardinality of 

  . Note that

since this is single-machine case, for simplicity,

the subscripts of  are deleted.

순서 독립적인 셋업타임을 가진 동일작업의 병렬기계 배치스케줄링 1 85

Following [4], henceforth, we consider only a

schedule  with no split job on each machine

such that, for    ⋯ 

 



 
≤

 

 
≤ ⋯ ≤




  , (1)

where  
  is the cardinality of 

  . Note

that Proposition 1 does not imply that an optimal

schedule is a GT schedule. Then,  can be ex-

pressed as

 
  




  



 
 




 

 



  




 




 

 




 

 (2)

It is observed from equation (2) that if the total

number of jobs allocated to each machine is

fixed,  is determined by the combination of

the number of jobs processed after each setup

time.

Lemma 1 Let      be the bipartite

graph corresponding to a feasible schedule 

defined as follows :

•  ⋯  is the set of machines and  

⋯  is the set of batches;

•∈  if some job of batch  is processed
on machine v in .

Then, Problem P has an optimal schedule 

with no cycle in  .

Proof Suppose that an optimal schedule  has

a cycle  in  . Without loss of generality, the

cycle  can be represented as

    ⋯  ,

where ∈ and ∈,   ⋯ . Let    be
the set of jobs in 

 
 allocated to  

  ⋯ . For consistency of notation, let   .

Let  be a schedule identical to  except that

the last job in 
 is moved immediately after

the last job in 
 ,    ⋯ . Let  be a

schedule identical to  except that the last job

in 
  is moved immediately after the last job

in 
    ⋯ . Note that, for simplicity, let


  

. Then, we can show that  ≤.

To do so, we introduce the following additional

notation :

•Let  be the set of batches between batches

   and  in  ,    ⋯ , respectively;

•Under  , let  and  be the number of

jobs after the last job in 
 and 

,  

 ⋯ , respectively;

•For    ⋯ , let














  

     →  

   
       →

 

and














  

       →

   
     →   

 

where    →  means that batch    is proc-

essed before batch  . For    ⋯ ,

 








      →

    →   

86 최병천․박명주

Then,

    and     ,

where

 


  



 ∈

 

∈
 



and

 


  



  ∈

 

∈
 



Since  is an optimal schedule, the following

inequalities should be satisfied :

≥  and ≥. (3)

Let  ∑    ∑∈  ∑∈ 

. Then, by inequalities (3) and the defini-

tions of  and ,

≤
  



 ≤
≤

  



 ≤


Since ,

   
  



 ≤


By repeatedly applying the argument used for  ,

we can construct a new schedule  such that

 ≤ and 
 does not contain C. The proof

is complete. ■

2.2 Pseudopolynomial-time Algorithm

In this subsection, we develop a pseudopoly-

nomial-time algorithm for Problem P with a fixed

number of machines. First, we consider the pro-

blem of finding an optimal schedule among GT

schedules. Let this problem be referred to as

Problem PGT.

Lemma 2 Problem PGT can be solved in time

 .

Proof For simplicity, let the batches be indexed

in non-decreasing order of 
 , that is,




≤ 


≤ ⋯ ≤

 .

When  jobs are processed on machine  while the

schedule is being constructed, let batch  be pro-

cessed before the first job on machine . Then, it

is observed that

•The completion time of job  is  ;

•The total completion time of jobs in batch 

is   

  

•The total completion time of jobs after batch

 is increased by   .

Based on these observations, we reduce Problem

PGT into the shortest path problem in an acyclic

graph. Let    ⋯   be the node that rep-

resents the following :

•The machines on which the batches in  

⋯  are processed have been determined;

•  is the number of jobs allocated to machine ,

   ⋯ .

Let s := 
 
 ⋯  and  be the source and

sink nodes, respectively. For    ⋯  and   

순서 독립적인 셋업타임을 가진 동일작업의 병렬기계 배치스케줄링 1 87

⋯  let   ⋯   be connected to 

 ⋯
  with weight   

     

, if     and ′ ′ for each ′∈ 
⋯ ╲. This edge denotes that batch  is

processed before the first job on machine . Let

   ⋯   be connected to  with weight 0.

It is clear that the  shortest path of the re-

duced graph represents an optimal schedule for

Problem PGT. Since the reduced graph is acyclic

and the number of edges is  , the 

shortest path can be found in   by the al-

gorithm in [1]. The proof is complete. ■

It is observed from Lemma 1 that, in Problem

P, there exists an optimal schedule with at most

 split batches, each of which can be proce-

ssed on at most  machines. Let   ⋯    

be the combination such that     ⋯  

is the vector of sub-batches of batch  . Let 

be the number of the jobs in sub-batch  allo-

cated to machine . Note that  can become

zero for some . This implies that no jobs in batch

 are allocated to machine . For each combina-

tion (  ⋯ ), we can construct Problem PGT,

where sub-batches are regarded as different bat-

ches. Note that if ≠′ , then sub-batches  and
′ are regarded as different batches in the
Problem PGT. Let ′ be the number of batches
in Problem PGT. Then, by Lemma 1,

′≤≤ . (4)

It is observed that the optimal schedule of

Problem IP is identical to the schedule with the

minimum total completion times among the opti-

mal schedules of each combination. Based on this

observation, we can construct the following al-

gorithm.

Algorithm ALG

Step 1 For each combination   ⋯    ,

construct the corresponding Problem PGT.

Step 2 For each Problem PGT, obtain an optimal

schedule by using the approach in Lem-

ma 2.

Step 3 Select the schedule with the minimum to-

tal completion time.

Note that since the number of combinations 

 ⋯    is      and the number
of combinations   ⋯   is 

    for

each batch      ⋯ , the total number

of combinations can be calculated as follows :

 
  

  


       


  





Furthermore, by Lemma 2 and inequality (4),

each Problem PGT can be solved in ′.
Thus, Algorithm ALG terminates in   

 

   




Theorem 1 Problem P can be solved in pseudo-

polynomial-time when the number of machines

is fixed.

Proof To encode Problem P, we just need the

setup time of each batch, the number of jobs be-

longing to each batch and the processing time.

Thus, the order of the input size is    

     where    ⋯  and

  ⋯ . The complexity of Algori-

thm ALG is pseudopolynomial when the number

of machines is fixed. ■

88 최병천․박명주

Remark 1 When we apply dynamic program-

ming algorithms [8] for Problem P, their com-

plexities are        and   

 , respectively, where    and  

∑    . Since they are pseudopolynomial-times

only if the numbers of machines and batches are

fixed, Algorithm ALG is more efficient.

3. Problem P with Identical
Setup Times

In this section, we consider Problem P with

identical setup times, that is,   ,     ⋯ .

Since Problem P is NP-hard even for the two-

machine case with identical setup times and unit

processing times [6], we propose an approx-

imation algorithm for Problem P with identical

setup times. Without loss of generality, assume

that the batches are indexed in non-increasing

order of  , that is,

 ≥ ≥ ⋯ ≥

Since the setup times are identical, equation (2)

can be rewritten as

  
  




  




 




  



  



  ,

where  ∑   
  Since∑   ∑   ∑   

 

∑   ∑   
 , however,  can be rewritten

as

  
  




 




  



  



   (5)

Note that the objective function (5) consists of

two parts. Let

  
  




 




  and   



  



  

To develop an approximation algorithm, we

introduce additional notation. Let  and  be the

quotient and remainder, respectively, when  is

divided by , that is,    Consider a GT

schedule   ⋯   as follows :

 








    ⋯       ⋯ 

    ⋯        ⋯ 
(6)

Let  and  be the quotient and remainder, re-

spectively, when  is divided by , that is, 

. Let

 








     ⋯ 

     ⋯ 

We present an approximation algorithm for Pro-

blem P with identical setup times. The under-

lying idea is to modify  into a schedule such

that the number of jobs processed on machine

 is exactly      ⋯ 

Algorithm APP

Step 1 Sort the batches by the decreasing order

of the number of jobs and let  ∅.

Step 2 Construct a schedule    ⋯  , de-

fined in (6).

•Let  be the number of jobs on machine  in

    ⋯ .

•Let  be the index such that      ⋯

 and ≤     ⋯ .

Step 3 For    ⋯  , move the first   

jobs from  into  and sort the jobs by

순서 독립적인 셋업타임을 가진 동일작업의 병렬기계 배치스케줄링 1 89

increasing batch index.

Step 4 For       ⋯ , sequence the

first     jobs from  before the first

job in  .

Step 5 Output a new schedule.

Note that since sorting batches in Step 1 and Steps

2～4 requires    and  times, respec-

tively, Algorithm APP terminates in   

time.

Lemma 3 ≤

Proof Consider two cases.

  is a GT schedule

Suppose that ≠. Let  be the smallest

index in  such that batch  is not processed

on machine . Without loss of generality, assume

that batch  is processed on machine ′ in .
Note that ′≠. It is observed from relation (1)
that batch  is processed at the -th po-

sition or later on machine ′ in . Let batch 
be the -th batch on machine  in . We can

make a new schedule  by exchanging the posi-

tions of batches  and . Since    ≥ ,

it is observed that  ≤. By repeatedly ap-

plying the argument above, we can attain a

schedule  and thus ≤.

  is not a GT schedule

Suppose batch  is processed on machines 

and ′ in . Let batch  be the -th and ′-th
batches in  and ′ , respectively. Without loss
of generality, assume that  ≥′. Then, we con-
struct a new schedule  by moving all the jobs

of batch  on machine  immediately after batch

g on machine ′. Then,

    ′  
  




  ≤.

By repeatedly applying the argument above,

we can attain a GT schedule  and thus ≤

≤by case .

By cases  and , the proof is complete. ■

Theorem 2 Let  be the schedule obtained by

Algorithm APP. Then,

 


≤ 




Proof For  in ∈   ⋯ , let  ⋯
  be the subsequence of the batches moved

to machine  by Step 4 of Algorithm APP.

Claim ∑     ≤
 

Proof It is observed from the construction of 

that  ≥  ≥ ⋯ ≥ and

  ≥  ≥     ⋯  . (7)

Inequality (7) implies the following :

•Since the first    jobs of  belong to batch

,    ⋯  , the set of batches in  after

Step 3 is   ⋯ ;

•Since batch 1 is always sequenced at the first

position, it does not belong to   ⋯   

for   ⋯ .

Furthermore, it is observed from the way to se-

quence jobs in Step 4 that if ≠′ , then  
⋯   and ′ ⋯ ′′ are disjoint. By

90 최병천․박명주

the implications above and this observation,


  



   
   



  ⋯
 

  
   



  ⋯
  ≤



The proof is complete. □

By Claim,


  



  ≤ 
   



  

≤  ≤
  





(8)

We, henceforth, introduce four relations to derive

the bound.

 When  is transformed into  by Algorithm

APP,  is increased by at most ∑     .

Thus, by inequality (8),

≤ 
   



   
   



  
   



 
≤ 

   



 
  



  ≤ . (9)

 By Lemma 3,  ≥
 ∑      and the

way to construct ,

       ≥


  



  

 

(10)

 Since ∑       ≥∑  






,

   


  



  ≥ 


  
















(11)

 Let ′ be the number of batches allocated to
 and let ′  ′  ′  ⋯ ′ ′  be the
sequence of batches allocated to  ,   

⋯ . Then,

   
  




 

′

 ′ ≥

  




 

′

 ′  . (12)

Then, by inequalities (9)～(12),




≤






 






≤









 




The proof is complete. ■

References

[1] Ahuja, R.A., K. Mehlhorn, and J.B. Orlin,

“Faster algorithm for the shortest path pro-

blem,” Journal of the Association for Com-

puting Machinery, Vol.37(1990), pp.213-223.

[2] Allahverdi, A., J.N.D. Gupta, and T. Aldowaisan,

“A review of scheduling research involving

setup considerations,” Omega, Vol.27(1999),

pp.219-239.

[3] Allahverdi, A., C.T. Ng, T.C.E. Cheng, and

M.Y. Kovalyov, “A survey of scheduling pro-

blems with setup times or costs,” European

Journal of Operational Research, Vol.187(2008),

pp.985-1032.

[4] Baker, K.R. and D. Trietsch, Principles of

Scheduling and Sequencing, John Wiley and

순서 독립적인 셋업타임을 가진 동일작업의 병렬기계 배치스케줄링 1 91

Sons, Inc, 2009.

[5] Cheng, T.C.E. and Z.L. Chen, “Parallel ma-

chine scheduling with batch setup times,”

Operations Research, Vol.42(1994), pp.1171-

1174.

[6] Liu, Z., W. Yu, and T.C.E. Cheng, “Scheduling

groups of unit length jobs on two identical

parallel machines,” Information Processing

Letters, Vol.69(1999), pp.275-281.

[7] Webster, S.T., “The complexity of scheduling

job families about a common due date,” Ope-

rations Research Letters, Vol.20(1997), pp.

65-74.

[8] Webster, S.T. and M. Azzioglu, “Dynamic pro-

gramming algorithms for scheduling parallel

machines with family setup times,” Compu-

ters and Operations Research, Vol.28(2001),

pp.127-137.

