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Parallel Machine Scheduling with lIdentical Jobs and
Sequence-Independent Setup Times
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m Abstract =

We consider the problem of scheduling identical jobs with sequence-independent setup times on parallel machines.
The objective is to minimize total completion times. We present the pseudopolynomial-time algorithm for the case
with a fixed number of machines and an efficient approximation algorithm for our problem with identical setup times,
which is known to be NP-hard even for the two-machine case.

Keywords : Batch Scheduling, Setup Times, Parallel Machine

1. Problem Definition problem that can be stated as follows. Suppose
we have a set of n jobs to be scheduled on m

Batch scheduling problems with setup times parallel machines, where each job belongs to
have been studied extensively [2, 3]. In this pa- some batch. Batch scheduling problems are cha-
per, we consider a particular batch scheduling racterized by a setup time that is only required
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between jobs from different batches. Each batch
g has its own set of n, jobs, F={J . /],
Jindy 9=1.2, - b Note that n=3_n,. Let p,;
be the processing time of J, ;, j=1,2, - n, g=
1,2, ---, b. In our problem, the processing time of
each job is identical, that is, p,;=p, j=1,2, -,
ng, g=1,2, - b. Let o = (o), 0,, =", 0,) be the
schedule such that o, is the subsequence of jobs
assigned to machine i, i=1, 2, ---, m. Let o,(j) be
the j—th jobin o, , i=1,2 -, m. Let G, (o) be the
completion time of J ; in o. Let s, be the setup
time required to process a job in batch g follow-
ing a job in a different batch. Note that if a job
follows a member of the same batch, then a setup
time is not required. The objective is to find a
schedule ¢ to minimize total completion times,
z(0')=%)_ %" G (o). Let this problem be re-
ferred to as Problem P.

Cheng and Chen [5] showed that Problem P
is NP-hard even for the two-machine case with
=1. Webster [7]
showed that Problem P is unary NP-hard even

unit length jobs, that is, p,;
for the case in which each job of the same batch
has the same processing time, that is, p, ;=p,.
Liu et al. [6] considered the two-machine case
of Problem P and presented a pseudopolyno—
mial-time algorithm for the case with unit length
jobs and an NP-hardness proof for the case with
unit length jobs and identical setup times, that
is, s, =s. Webster and Azzioglu [8] presented two
dynamic programming algorithms for Problem P
with arbitrary processing times whose objective
is to minimize the total weighted flow time. In
this paper, we present a pseudopolynomial-time
algorithm with better complexity than that in [8]
for Problem P with a fixed number of machines
and an efficient approximation algorithm for

Problem P with identical setup times.

2. Problem P

In this section, we introduce an optimality con—
dition and present a pseudopolynomial-time al-
gorithm for Problem P with a fixed number of

machines.

2.1 Optimality Condition

In this subsection, we present an optimality
condition that is used later to develop a pseudo—
polynomial-time algorithm.

First, we introduce some terminology and the
known result. Let batch g be referred to as a split
batch if it has at least two setups and let the
schedule with no split batches be referred to as
a group technology (GT) schedule. Note that in
the GT schedule, each batch has exactly one
(a,, 0y,

setup. Consider a schedule o = Y o)

such that for i=1,2,--, m:

e Let o, be the number of batches allocated
to o;;

o Let m, = (m,(1), m;(2), -, m(ey)) be the sequence
of the batches allocated to o;;

o Let o, = (/" /=@ o )) where J Y

is the set of jobs in batch =;(j) in ;.

Proposition 1 [4] There exists an optimal sche-
dule o' for the single-machine case of Problem
P such that o is a GT schedule and

where |77 9 is the cardindlity of J°". Note that
since this is single-machine case, for simplicity,

the subscripts of = are deleted.



Following [4], henceforth, we consider only a
schedule ¢ with no split job on each machine

such that, for i=1,2, -, m,

S S S

(1) m(2)

mi(a;)
) = e = T W

= ‘j‘w,(a,)‘ ’

where |7 is the cardinality of /™. Note
that Proposition 1 does not imply that an optimal
schedule is a GT schedule. Then, z(¢) can be ex—

pressed as

mo

A= 3  SY) ©)

i=1g=1 ji=yg

P AN i) o [ i)
+5 2T+ ).
ji=1

i=1j=1

It is observed from equation (2) that if the total
number of jobs allocated to each machine is
fixed, z(o) is determined by the combination of
the number of jobs processed after each setup

time.

Lemma 1 Let G° = (M, N, E°) be the bipartite
graph corresponding to a feasible schedule o

defined as follows -

e \/={1, -, m} IS the set of machines and N ={1,
-+, b} s the set of batches;
e {uv}EE° if some job of batch v is processed

on machine v in o.

Then, Problem P has an optimal schedule o

with no cycle in G°.

Proof Suppose that an optimal schedule ¢ has
a cycle ¢ in G7. Without loss of generality, the
cycle € can be represented as

olzkel o] WA wx] AAZE 85

C=1—k —2—k,— - —l—k—1,

where i€M and kEN, i=1, -, 1. Let J"* (/") be
the set of jobs in J*"*(J/% allocated to o, i=
1,2, - 1. For consistency of notation, let k, =k,
Let ' be a schedule identical to ¢ except that
the last job in J°* is moved immediately after
the last job in J' """ i=1,2 - 1. Let o®> be a
schedule identical to o except that the last job
in /""" is moved immediately after the last job
in J7% i=1,2, - 1. Note that, for simplicity, let

yantl

=J"" Then, we can show that z(c") < 2(0).

To do so, we introduce the following additional

notation :

eLet 5 be the set of batches between batches
k_, and k, in o, i=1,2, -, [, respectively;

® Under o, let n,, and n,, be the number of
jobs after the last job in " and J*", i=1,
2, --+, 1, respectively;

eFor i=1,2 -1, let

(n,  +1)s, ifl7"1=1 and k, —k_,
0., =19, sel bk — )
ik M, S ifl"1=1 and k,_, = k;
0 otherwise
and
(n,, +Ds,  ifL7" =1 and k_, —k,
5 = ol ki
ik " S ifl7"=1 and k; —k
0 otherwise

where k,_, —k means that batch & _, is proc-
essed before batch k. For i=1,2, -1,

0 if k—k_,.
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Then,

z(c")=z(0)+A" and z(6*) =z(0) + 2,
where
Al =

i (—6i‘k’+p1. (— Essg —5k) +(1—p1.)(2 s, +sk,ﬂ))

i=1 9E S,
and

Ar=
:(—@k I+pi(23g+sk’)+(l—pi)(— Esg_ﬁ, ]))

gE S, 9ESs;

Since o is an optimal schedule, the following

inequalities should be satisfied :

A'> 0 and A?>0. (3)

Let A =%_ l(pi (=2, g8, —5,)+A=p) (Z o g5, +
s )). Then, by inequalities (3) and the defini-

tions of ¢, and ¢, ,

i _ i
0< )6, <A<—->5, =0
i=1 i=1
Since A=0,

1
2(c') =z(0)— E(;M < z(0).
i=1 "
By repeatedly applying the argument used for o,
we can construct a new schedule o such that
2(o) <z(0) and G° does not contain C. The proof

is complete. W

2.2 Pseudopolynomial-time Algorithm

In this subsection, we develop a pseudopoly—
nomial-time algorithm for Problem P with a fixed

number of machines. First, we consider the pro—
blem of finding an optimal schedule among GT
schedules. Let this problem be referred to as
Problem PGT.

Lemma 2 Problem PGT can be solved in time
O(bmn™).

Proof For simplicity, let the batches be indexed

in non-decreasing order of Z—’, that is,
g

When ¢ jobs are processed on machine i while the
schedule is being constructed, let batch ¢ be pro—
cessed before the first job on machine i. Then, it
is observed that

* The completion time of job .J,

4 18 s, +ip;

e The total completion time of jobs in batch g
is n,gsg+§ng(ng+1).

¢ The total completion time of jobs after batch

g is increased by ¢ (s, +np).

Based on these observations, we reduce Problem
PGT into the shortest path problem in an acyclic
-, ¢, ) be the node that rep-

‘m

graph. Let Mg; ¢, c,, -

resents the following :

e The machines on which the batches in {b, b—1,
---, g} are processed have been determined;
® ¢ is the number of jobs allocated to machine 1,

i=1,2, -, m.

Let s := Nb+1; 0, -+, 0) and t be the source and

m

sink nodes, respectively. For g=1, -+, b and i= 1,



-,m, let Mg+1;¢, -, ¢,) be connected to Mg,

_c17 -, ¢, ) with weight ((ngsg-‘r%ng(ng-ﬁ-l)-ﬁ-cl (sg+

n,p)), if ¢, =c¢,+n, and ¢, =c for each /<{1, 2,
-+, bIN\{i}. This edge denotes that batch ¢ is
processed before the first job on machine i. Let
N5 ¢, ¢ - c,,) be connected to ¢ with weight 0.

It is clear that the s—t shortest path of the re-
duced graph represents an optimal schedule for
Problem PGT. Since the reduced graph is acyclic
and the number of edges is O(bmn™), the s—t
shortest path can be found in O(bmn™) by the al-
gorithm in [1]. The proof is complete. Il

It is observed from Lemma 1 that, in Problem
P, there exists an optimal schedule with at most
(m—1) split batches, each of which can be proce-
ssed on at most m machines. Let (v, w,, -+, w,, _,)
be the combination such that w, = (w, 1> @, 5 @, ,,)
is the vector of sub-batches of batch w,. Let g ;
be the number of the jobs in sub-batch w, allo-
cated to machine i. Note that @,; can become
zero for some i. This implies that no jobs in batch
w, are allocated to machine i. For each combina-
tion (w,, wy, =+, w, ), We can construct Problem PGT,
where sub-batches are regarded as different bat-
ches. Note that if i, then sub-batches w,, and

w, .. are regarded as different batches in the

(2

Problem PGT. Let ¥ be the number of batches
in Problem PGT. Then, by Lemma 1,

b <b+mlm—1) <bm?. (4)

It is observed that the optimal schedule of
Problem IP is identical to the schedule with the
minimum total completion times among the opti-
mal schedules of each combination. Based on this
observation, we can construct the following al-

gorithm.
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Algorithm ALG

Step 1 For each combination (w,, wy, -+ w, _,),

construct the corresponding Problem PGT.

Step 2 For each Problem PGT, obtain an optimal
schedule by using the approach in Lem-

ma 2.

Step 3 Select the schedule with the minimum to-

tal completion time.

Note that since the number of combinations (w,,

b

71) = 0™ ') and the number

Wys =7y w’m*l) 1S (m
o . o
of combinations (4, ,, @, 5 @,,,) is Oln; ") for

each batch w,, h=1, 2, ---, m—1, the total number

of combinations can be calculated as follows :

m—1

O(bm71 H - l) — O(bm *1( n )(TII*])z).

Wh

h=1 m—1

Furthermore, by Lemma 2 and inequality (4),
each Problem PGT can be solved in O(b'mn™).

Thus, Algorithm ALG terminates in o{gn(™ V"1

mS —(m—1 )2).

Theorem 1 Problem P can be solved in pseudo—
polynomial-time when the number of machines

is fixed

Proof To encode Problem P, we just need the
setup time of each batch, the number of jobs be-
longing to each batch and the processing time.

Thus, the order of the input size is (blogn,_ . +

max

blog s, +logp), where n,, = max{n,, -, n,} and

max max

Spae =max{s,, .-+, 5, }. The complexity of Algori-

thm ALG is pseudopolynomial when the number

of machines is fixed.
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Remark 1 When we apply dynamic program-
ming algorithms [8] for Problem P, their com-
plexities are O(mb™ "™ *7 1) and O(mb™ "2

n’(P+8)™), respectively, where P = np and S =
ZZ)

,—15,. Since they are pseudopolynomial-times
only if the numbers of machines and batches are

fixed, Algorithm ALG is more efficient.

3. Problem P with Identical
Setup Times

In this section, we consider Problem P with
identical setup times, that is, s, =s, g=1,2, -+, b.
Since Problem P is NP-hard even for the two-
machine case with identical setup times and unit
processing times [6], we propose an approx-
imation algorithm for Problem P with identical
setup times. Without loss of generality, assume
that the batches are indexed in non-increasing

order of n , that is,

9’

ng =Mn, = o =ny

Since the setup times are identical, equation (2)

can be rewritten as

L

:52 Z Z\f W'(j)|+§2}’y£('y +1
i=1lg=1j=g i=1

where v, = =" 7"V, Since 33, 50 30 7Y
=3, = 7791 however, (o) can be rewritten

as

m

- iz D23t (5)

Note that the objective function (5) consists of

two parts. Let

m_ Qi

() =53 D/

i=1j=1

N and h(o 7§2

To develop an approximation algorithm, we
introduce additional notation. Let k¥ and r be the
quotient and remainder, respectively, when b is
divided by m, that is, b= km+r. Consider a GT

schedule 7=(r, -, 7,) as follows :

((J17Jm+i7“.”]km+i) fOI‘ 74:1‘7 r,
=y , (6)
(J, Jrtis e, JEUmEY) por j=p41, -, m

Let ¢ and « be the quotient and remainder, re-
spectively, when n is divided by m, that is, n=
gn+u. Let

(g+1 for i=1,2,--, u
L =

7

q for i=u+1,u+2, -, m
We present an approximation algorithm for Pro-
blem P with identical setup times. The under-
lying idea is to modify = into a schedule such

that the number of jobs processed on machine

i is exactly Z,i= 1,2, m
Algorithm APP

Step 1 Sort the batches by the decreasing order
of the number of jobs and let Q= o.

Step 2 Construct a schedule 7= (7, -+, 7,), de—

fined in (6).

5 Tm

e Let v, be the number of jobs on machine 7 in
7i=1,2, - m.
e Let r be the index such that v, >Z,i=1,2, -

rand v < L,i= 741, r+2, - m

Step 3 For i=1,2, -, r, move the first (y,—Z)

i

jobs from 7, into @ and sort the jobs by



increasing batch index.

Step 4 For i=r+1, r+2,
first (£, —~;) jobs from @ before the first

-+, m, sequence the

job in 7.

Step 5 Output a new schedule.

Note that since sorting batches in Step 1 and Steps
2~4 requires O(b log b) and O(b+m) times, respec—
tively, Algorithm APP terminates in O(b log b+m)

time.

Lemma 3 f(r) < f(o).

Proof Consider two cases.

i) o is a GT schedule

Suppose that r=¢. Let vm+i be the smallest
index in ¢ such that batch vm+i is not processed
on machine i. Without loss of generality, assume
that batch vm+i is processed on machine 7' in o.
Note that ¢ =i. It is observed from relation (1)
that batch vm+i is processed at the (v+1)-th po-
sition or later on machine i in o. Let batch ¢
be the (v+1)-th batch on machine i in . We can
make a new schedule o' by exchanging the posi-
tions of batches vm+i and g. Since n,, .,

it is observed that f(¢') < f(o). By repeatedly ap—

zng,

plying the argument above, we can attain a
schedule 7 and thus f(r) < f(o0).

ii) o is not a GT schedule

Suppose batch g is processed on machines i
and ¢ in o. Let batch ¢ be the k-th and &, —th
batches in o, and o,’, respectively. Without loss
of generality, assume that k, > k,. Then, we con-
struct a new schedule ¢ by moving all the jobs
of batch g on machine i immediately after batch

g on machine 4. Then,
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H6) = 10) =~k T = 30 1779 < 4o,

j=kt1

By repeatedly applying the argument above,
we can attain a GT schedule ¢ and thus f(n) <

f(o) < flo)by case ).
By cases i) and i), the proof is complete. Il

Theorem 2 Let p be the schedule obtained by
Algorithm APP. Then,

2(p) <1+ 25(m—1) .
z(p*) - 2sm+p(n+m)

Proof For i in i € {r+1, r+2, -, m}, let (x(1), -,
7,(1,)) be the subsequence of the batches moved

to machine i by Step 4 of Algorithm APP.

Claim =" . (-1 <r-1L
Proof It is observed from the construction of =
that 7, =7, = -~ >4, and

L=7, =7—n, i=1 7. (7

Inequality (7) implies the following :

e Since the first (v, —Z,) jobs of 7. belong to batch

Step 3 is {12, - r};
e Since batch 1 is always sequenced at the first
) %1' (l, )}

position, it does not belong to {7, (2), -

for i=r+1, -, m.

Furthermore, it is observed from the way to se-
quence jobs in Step 4 that if =4, then {7, (2),

(1)} and {m,(2), -, 7,(,)} are disjoint. By
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the implications above and this observation,

The proof is complete. []

By Claim,

m

Z (I, —1)L

1
;

= Gfl)[’?ﬂ = Zlﬁ
i=2

Ms

I, -1L,, )

+

=

i=

We, henceforth, introduce four relations to derive
the bound.

i) When 7 is transformed into p by Algorithm
APP, f(r) is increased by at most s>™"

*+177

Thus, by inequality (8),

i) By Lemma 3, h(o") =232™ |

way to construct p,

2(0")=f(o")+h(o") = f)+ L(L+1) (10)

3RS
.MS

i=1

= f(n)+h(p).

i) Since L L(L ) = T (),

wl%
Iﬁ

E (L,+1) +1) 11

nn
mm

_ pnln+m)
n 2m '

w) Let o/, be the number of batches allocated to
. and let 7', = (7', (1), 7', (2), ---, 7', («,)). be the
sequence of batches allocated to =, i=1, 2,

---, m. Then,
f@) _Si Sﬂf ‘>8i S\f I=sn. (12)

i=1j=1 i=1j=1

Then, by inequalities (9)~(12),

() fn+s n+h(p)
z(0") f(0)+h(p)
sm_ln Sm—ln
o m m
@G T )
2m
o 2s(m—1)
B 2sm~+pn+m)’

The proof is complete. H
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