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Abstract

We consider the problem of scheduling identical jobs with sequence-independent setup times on parallel machines. 

The objective is to minimize total completion times. We present the pseudopolynomial-time algorithm for the case 

with a fixed number of machines and an efficient approximation algorithm for our problem with identical setup times, 

which is known to be NP-hard even for the two-machine case.
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1. Problem Definition

Batch scheduling problems with setup times 

have been studied extensively [2, 3]. In this pa-

per, we consider a particular batch scheduling 

problem that can be stated as follows. Suppose 

we have a set of   jobs to be scheduled on   

parallel machines, where each job belongs to 

some batch. Batch scheduling problems are cha-

racterized by a setup time that is only required 
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between jobs from different batches. Each batch 

g has its own set of   jobs, 
    ⋯  

,     ⋯   Note that ∑    . Let   

be the processing time of ,    ⋯  ,    

  ⋯ . In our problem, the processing time of 

each job is identical, that is,   ,    ⋯, 

 ,     ⋯ . Let   = ( ,  , …,  ) be the 

schedule such that   is the subsequence of jobs 

assigned to machine ,    ⋯ . Let    be 

the -th job in  ,    ⋯ . Let   be the 

completion time of   in . Let   be the setup 

time required to process a job in batch g follow-

ing a job in a different batch. Note that if a job 

follows a member of the same batch, then a setup 

time is not required. The objective is to find a 

schedule   to minimize total completion times, 

  ∑   ∑    
 . Let this problem be re-

ferred to as Problem P.

Cheng and Chen [5] showed that Problem P 

is NP-hard even for the two-machine case with 

unit length jobs, that is,   . Webster [7] 

showed that Problem P is unary NP-hard even 

for the case in which each job of the same batch 

has the same processing time, that is,    . 

Liu et al. [6] considered the two-machine case 

of Problem P and presented a pseudopolyno-

mial-time algorithm for the case with unit length 

jobs and an NP-hardness proof for the case with 

unit length jobs and identical setup times, that 

is,   . Webster and Azzioglu [8] presented two 

dynamic programming algorithms for Problem P 

with arbitrary processing times whose objective 

is to minimize the total weighted flow time. In 

this paper, we present a pseudopolynomial-time 

algorithm with better complexity than that in [8] 

for Problem P with a fixed number of machines 

and an efficient approximation algorithm for 

Problem P with identical setup times.

2. Problem P

In this section, we introduce an optimality con-

dition and present a pseudopolynomial-time al-

gorithm for Problem P with a fixed number of 

machines. 

2.1 Optimality Condition

In this subsection, we present an optimality 

condition that is used later to develop a pseudo-

polynomial-time algorithm.

First, we introduce some terminology and the 

known result. Let batch g be referred to as a split 

batch if it has at least two setups and let the 

schedule with no split batches be referred to as 

a group technology (GT) schedule. Note that in 

the GT schedule, each batch has exactly one 

setup. Consider a schedule   = ( ,  , …,  ) 

such that for    ⋯  :

• Let   be the number of batches allocated 

to  ;

• Let       ⋯     be the sequence 

of the batches allocated to  ;

• Let   
  

  ⋯ 
 , where 

   

is the set of jobs in batch    in  .

Proposition 1 [4] There exists an optimal sche-

dule   for the single-machine case of Problem 

P such that   is a GT schedule and









≤







≤ ⋯ ≤





 ,

where 
  is the cardinality of 

  . Note that 

since this is single-machine case, for simplicity, 

the subscripts of   are deleted.
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Following [4], henceforth, we consider only a 

schedule   with no split job on each machine 

such that, for    ⋯ 

      



 
≤

 

 
≤ ⋯ ≤




  , (1)

where  
   is the cardinality of 

  . Note 

that Proposition 1 does not imply that an optimal 

schedule is a GT schedule. Then,   can be ex-

pressed as 

 
  




  



 
 




 

 



  




 




 

 




 

 (2)

It is observed from equation (2) that if the total 

number of jobs allocated to each machine is 

fixed,   is determined by the combination of 

the number of jobs processed after each setup 

time.

Lemma 1 Let       be the bipartite 

graph corresponding to a feasible schedule   

defined as follows :

•  ⋯   is the set of machines and    

⋯   is the set of batches;

•∈   if some job of batch   is processed 
on machine v in .

Then, Problem P has an optimal schedule   

with no cycle in  .

Proof Suppose that an optimal schedule   has 

a cycle   in  . Without loss of generality, the 

cycle   can be represented as

    ⋯  ,

where ∈ and ∈,   ⋯ . Let     be 
the set of jobs in 

 
  allocated to    

  ⋯ . For consistency of notation, let   . 

Let   be a schedule identical to   except that 

the last job in 
 is moved immediately after 

the last job in 
 ,    ⋯ . Let   be a 

schedule identical to   except that the last job 

in 
   is moved immediately after the last job 

in 
     ⋯ . Note that, for simplicity, let 


   

. Then, we can show that  ≤.

To do so, we introduce the following additional 

notation :

•Let   be the set of batches between batches 

    and   in  ,    ⋯ , respectively;

•Under  , let   and   be the number of 

jobs after the last job in 
  and 

,    

 ⋯ , respectively;

•For    ⋯ , let














  

     →  

   
       →

 

and

 














  

       →

   
     →   

 

where    →   means that batch     is proc-

essed before batch  . For    ⋯ ,

 








      →

    →   
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Then,

     and     ,

where

 


  



 ∈

 

∈
 



and

 


  



  ∈

 

∈
 



Since   is an optimal schedule, the following 

inequalities should be satisfied :

≥   and ≥.    (3)

Let  ∑    ∑∈  ∑∈   

. Then, by inequalities (3) and the defini-

tions of   and ,

≤
  



 ≤
≤

  



 ≤


Since ,

   
  



 ≤


By repeatedly applying the argument used for  , 

we can construct a new schedule   such that 

  ≤  and 
  does not contain C. The proof 

is complete. ■

2.2 Pseudopolynomial-time Algorithm

In this subsection, we develop a pseudopoly-

nomial-time algorithm for Problem P with a fixed 

number of machines. First, we consider the pro-

blem of finding an optimal schedule among GT 

schedules. Let this problem be referred to as 

Problem PGT.

Lemma 2 Problem PGT can be solved in time 

 .

Proof For simplicity, let the batches be indexed 

in non-decreasing order of 
 , that is,




≤ 


≤ ⋯ ≤

 .

When   jobs are processed on machine   while the 

schedule is being constructed, let batch   be pro-

cessed before the first job on machine . Then, it 

is observed that

•The completion time of job   is  ;

•The total completion time of jobs in batch   

is   

  

•The total completion time of jobs after batch 

  is increased by   .

Based on these observations, we reduce Problem 

PGT into the shortest path problem in an acyclic 

graph. Let    ⋯    be the node that rep-

resents the following :

•The machines on which the batches in    

⋯   are processed have been determined;

•   is the number of jobs allocated to machine , 

   ⋯ .

Let s := 
 
 ⋯   and   be the source and 

sink nodes, respectively. For    ⋯   and     
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⋯   let   ⋯    be connected to   

 ⋯
   with weight   

       

, if      and ′ ′  for each ′∈   
⋯ ╲. This edge denotes that batch   is 

processed before the first job on machine . Let 

   ⋯    be connected to   with weight 0.

It is clear that the   shortest path of the re-

duced graph represents an optimal schedule for 

Problem PGT. Since the reduced graph is acyclic 

and the number of edges is  , the   

shortest path can be found in    by the al-

gorithm in [1]. The proof is complete. ■

It is observed from Lemma 1 that, in Problem 

P, there exists an optimal schedule with at most 

  split batches, each of which can be proce-

ssed on at most   machines. Let   ⋯      

be the combination such that     ⋯    

is the vector of sub-batches of batch  . Let   

be the number of the jobs in sub-batch   allo-

cated to machine . Note that   can become 

zero for some . This implies that no jobs in batch 

  are allocated to machine . For each combina-

tion (  ⋯  ), we can construct Problem PGT, 

where sub-batches are regarded as different bat-

ches. Note that if ≠′ , then sub-batches   and 
′  are regarded as different batches in the 
Problem PGT. Let ′  be the number of batches 
in Problem PGT. Then, by Lemma 1, 

′≤≤ .     (4)

It is observed that the optimal schedule of 

Problem IP is identical to the schedule with the 

minimum total completion times among the opti-

mal schedules of each combination. Based on this 

observation, we can construct the following al-

gorithm.

Algorithm ALG

Step 1 For each combination   ⋯    , 

construct the corresponding Problem PGT.

Step 2 For each Problem PGT, obtain an optimal 

schedule by using the approach in Lem-

ma 2.

Step 3 Select the schedule with the minimum to-

tal completion time.

Note that since the number of combinations   

 ⋯     is       and the number 
of combinations   ⋯    is 

     for 

each batch      ⋯ , the total number 

of combinations can be calculated as follows :

 
  

  


       


  





Furthermore, by Lemma 2 and inequality (4), 

each Problem PGT can be solved in ′. 
Thus, Algorithm ALG terminates in   

 

   




Theorem 1 Problem P can be solved in pseudo-

polynomial-time when the number of machines 

is fixed.

Proof To encode Problem P, we just need the 

setup time of each batch, the number of jobs be-

longing to each batch and the processing time. 

Thus, the order of the input size is      

      where    ⋯   and 

  ⋯ . The complexity of Algori-

thm ALG is pseudopolynomial when the number 

of machines is fixed. ■
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Remark 1  When we apply dynamic program-

ming algorithms [8] for Problem P, their com-

plexities are         and     

 , respectively, where     and    

∑    . Since they are pseudopolynomial-times 

only if the numbers of machines and batches are 

fixed, Algorithm ALG is more efficient.

3. Problem P with Identical 
Setup Times

In this section, we consider Problem P with 

identical setup times, that is,   ,     ⋯ . 

Since Problem P is NP-hard even for the two- 

machine case with identical setup times and unit 

processing times [6], we propose an approx-

imation algorithm for Problem P with identical 

setup times. Without loss of generality, assume 

that the batches are indexed in non-increasing 

order of  , that is,

 ≥ ≥ ⋯ ≥

Since the setup times are identical, equation (2) 

can be rewritten as

  
  




  




 




  



  



  ,

where  ∑   
   Since∑   ∑   ∑   

   

∑   ∑   
 , however,   can be rewritten 

as

  
  




 




  



  



      (5)

Note that the objective function (5) consists of 

two parts. Let

  
  




 




   and   



  



  

To develop an approximation algorithm, we 

introduce additional notation. Let   and   be the 

quotient and remainder, respectively, when   is 

divided by , that is,     Consider a GT 

schedule   ⋯    as follows :

 








    ⋯       ⋯ 

    ⋯        ⋯ 
(6)

Let   and   be the quotient and remainder, re-

spectively, when   is divided by , that is,   

. Let

 








     ⋯ 

     ⋯ 

We present an approximation algorithm for Pro-

blem P with identical setup times. The under-

lying idea is to modify   into a schedule such 

that the number of jobs processed on machine 

  is exactly      ⋯ 

Algorithm APP

Step 1 Sort the batches by the decreasing order 

of the number of jobs and let  ∅.

Step 2 Construct a schedule    ⋯  , de-

fined in (6).

•Let   be the number of jobs on machine   in 

    ⋯ .

•Let   be the index such that      ⋯  

  and ≤     ⋯ .

Step 3 For    ⋯  , move the first     

jobs from   into   and sort the jobs by 
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increasing batch index.

Step 4 For       ⋯ , sequence the 

first      jobs from   before the first 

job in  .

Step 5 Output a new schedule.

Note that since sorting batches in Step 1 and Steps 

2～4 requires     and   times, respec-

tively, Algorithm APP terminates in     

time.

Lemma 3 ≤

Proof Consider two cases.

    is a GT schedule

Suppose that ≠. Let   be the smallest 

index in   such that batch   is not processed 

on machine . Without loss of generality, assume 

that batch   is processed on machine ′  in . 
Note that ′≠. It is observed from relation (1) 
that batch   is processed at the -th po-

sition or later on machine ′  in . Let batch   
be the -th batch on machine   in . We can 

make a new schedule   by exchanging the posi-

tions of batches   and . Since    ≥ , 

it is observed that  ≤. By repeatedly ap-

plying the argument above, we can attain a 

schedule   and thus ≤.

    is not a GT schedule

Suppose batch   is processed on machines   

and ′  in . Let batch   be the -th and ′-th 
batches in   and ′ , respectively. Without loss 
of generality, assume that  ≥′. Then, we con-
struct a new schedule   by moving all the jobs 

of batch   on machine   immediately after batch 

g on machine ′. Then,

    ′  
  




  ≤.

By repeatedly applying the argument above, 

we can attain a GT schedule   and thus ≤ 

≤by case .

By cases   and , the proof is complete. ■

Theorem 2 Let   be the schedule obtained by 

Algorithm APP. Then,

 


≤ 




Proof For   in ∈   ⋯ , let  ⋯  
   be the subsequence of the batches moved 

to machine   by Step 4 of Algorithm APP.

Claim ∑     ≤
 

Proof It is observed from the construction of   

that  ≥  ≥ ⋯ ≥  and

   ≥  ≥     ⋯  . (7)

Inequality (7) implies the following :

•Since the first     jobs of   belong to batch 

,    ⋯  , the set of batches in   after 

Step 3 is   ⋯ ;

•Since batch 1 is always sequenced at the first 

position, it does not belong to   ⋯     

for   ⋯ .

Furthermore, it is observed from the way to se-

quence jobs in Step 4 that if ≠′ , then    
⋯    and ′ ⋯ ′′  are disjoint. By 
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the implications above and this observation,


  



   
   



  ⋯
 

  
   



  ⋯
  ≤



The proof is complete. □

By Claim,


  



  ≤ 
   



  

≤  ≤
  





(8)

We, henceforth, introduce four relations to derive 

the bound.

  When   is transformed into   by Algorithm 

APP,   is increased by at most ∑     . 

Thus, by inequality (8),

≤ 
   



   
   



  
   



 
≤ 

   



 
  



  ≤ . (9)

  By Lemma 3,  ≥
 ∑       and the 

way to construct ,

        ≥


  



  

 

(10)

  Since ∑       ≥∑  






,

   


  



  ≥ 


  
















(11)

  Let ′  be the number of batches allocated to 
  and let ′  ′  ′  ⋯ ′ ′   be the 
sequence of batches allocated to  ,     

⋯ . Then,

   
  




 

′

 ′ ≥

  




 

′

 ′  . (12)

Then, by inequalities (9)～(12),




≤






 






≤









 




 

The proof is complete. ■
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