DOI QR코드

DOI QR Code

INSERTION-OF-IDEAL-FACTORS-PROPERTY

  • Received : 2014.06.22
  • Accepted : 2014.08.14
  • Published : 2014.09.30

Abstract

Due to Bell, a ring R is usually said to be IFP if ab = 0 implies aRb = 0 for $a,b{\in}R$. It is shown that if f(x)g(x) = 0 for $f(x)=a_0+a_1x$ and $g(x)=b_0+{\cdots}+b_nx^n$ in R[x], then $(f(x)R[x])^{2n+2}g(x)=0$. Motivated by this results, we study the structure of the IFP when proper ideals are taken in place of R, introducing the concept of insertion-of-ideal-factors-property (simply, IIFP) as a generalization of the IFP. A ring R will be called an IIFP ring if ab = 0 (for $a,b{\in}R$) implies aIb = 0 for some proper nonzero ideal I of R, where R is assumed to be non-simple. We in this note study the basic structure of IIFP rings.

Keywords

References

  1. D.D. Anderson, V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), 2265-2272. https://doi.org/10.1080/00927879808826274
  2. E.P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  3. C. Huh, Y. Lee, A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), 751-761. https://doi.org/10.1081/AGB-120013179
  4. H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  5. N.K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488. https://doi.org/10.1006/jabr.1999.8017
  6. N.K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  7. T.K. Kwak, M.J. Lee, Y. Lee, On sums of coeficients of products of polynomials, Comm. Algebra 42 (2014), 4033-4046. https://doi.org/10.1080/00927872.2013.804530
  8. L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les idaux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
  9. S. Chhawchharia, M.B. Rege, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14-17.
  10. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9