DOI QR코드

DOI QR Code

빅데이터 분산처리시스템의 품질평가모델

A Quality Evaluation Model for Distributed Processing Systems of Big Data

  • 최승준 (숭실대학교 SW특성화대학원) ;
  • 박제원 (숭실대학교 SW특성화대학원) ;
  • 김종배 (숭실대학교 SW특성화대학원) ;
  • 최재현 (숭실대학교 SW특성화대학원)
  • 투고 : 2014.07.10
  • 심사 : 2014.08.31
  • 발행 : 2014.08.31

초록

IT기술이 발전함에 따라, 우리가 접하는 데이터의 양은 기하급수적으로 늘어나고 있다. 이처럼 방대한 데이터들을 분석하고 관리하기 위한 기술로 등장한 것이 빅데이터 분산처리시스템이다. 기존 분산처리시스템에 대한 품질평가는 정형 데이터 중심의 환경을 바탕으로 이루어져 왔다. 그러므로, 이를 비정형 데이터 분석이 핵심인 빅데이터 분산처리시스템에 그대로 적용시킬 경우, 정확한 품질평가가 이루어질 수 없다. 따라서, 빅데이터 분석 환경을 고려한 분산처리시스템의 품질평가모델에 대한 연구가 필요하다. 본 논문에서는 소프트웨어 품질에 관한 국제 표준인 ISO/IEC9126에 근거하여 빅데이터 분산처리 시스템에서 요구되는 품질평가 요소를 도출하고, 이를 측정하기 위한 메트릭을 정의함으로써 새로이 품질평가모델을 제안한다.

According to the evolving of IT technologies, the amount of data we are facing increasing exponentially. Thus, the technique for managing and analyzing these vast data that has emerged is a distributed processing system of big data. A quality evaluation for the existing distributed processing systems has been proceeded by the structured data environment. Thus, if we apply this to the evaluation of distributed processing systems of big data which has to focus on the analysis of the unstructured data, a precise quality assessment cannot be made. Therefore, a study of the quality evaluation model for the distributed processing systems is needed, which considers the environment of the analysis of big data. In this paper, we propose a new quality evaluation model by deriving the quality evaluation elements based on the ISO/IEC9126 which is the international standard on software quality, and defining metrics for validating the elements.

키워드

참고문헌

  1. Amajad Umar, "Distributed Computing", Prentice-Hall,1993
  2. Australian Government (Department of Finance and Deregulation), "Big Data Strategy - Issues Paper", (2013)
  3. B. M. Im, S. H. Hong, J. C. Song and M. H. Kim. (1995) "Development of A Storage System for Distributed Transaction Processing", Proc, KIISE, 3-6
  4. C. H. Lee, "A Study of Distributed Data Processing System", JournalofIndustrialScience&Technology115-126,(1980)
  5. Chang, M. S., Chen, D. J., Lin, M. S. and Ku, K.L. (2000), "The Distributed Program Reliability Analysis on Star Topologies", ComputersandOperations Research,Vol.27,129-142. https://doi.org/10.1016/S0305-0548(99)00011-8
  6. Chen, D. J. and Huang, T. H. (1992), "Reliability Analysis of Distributed Systems Based on a Fast Reliabil ity Algorithm", IEEETransactiononParallelandDistributedSystems,Vol.3,No.2,pp.139-154. https://doi.org/10.1109/71.127256
  7. Dai, Y. S., Xie, M., Poh, K. L.. and Liu, G. Q (2003), "A study of service reliability and availability for distributed systems", ReliabilityEngineeringandSystemSafety,Vol.79,No.1,pp.103-112. https://doi.org/10.1016/S0951-8320(02)00200-4
  8. Daniel, J. Abadi. "Consistency Tradeoffs in Modern Distributed Database System Design", IEEEComputerSociety,2012
  9. Enslow, P. H., "What is a Distributed Data Processing System?", Computer11,1(1978)
  10. Eric A. Brewer. "Toward robust distributed systems." PrinciplesofDistributedComputing,Portland,Oregon,July,2000
  11. Gartner (2011). "Hype Cycle for Emerging Technologies 2011"
  12. Hesselgrave, M. R., "Consideration for Building Distributed Transaction Processing Systems on UNIX System V", UniForumconference,1990
  13. Hsieh, C. and Hsieh, Y. (2003), "Reliability and cost optimization in distributed computing systems", ComputersandOperationsResearch,Vol.30,No.8,pp.1103-1119. https://doi.org/10.1016/S0305-0548(02)00058-8
  14. H. J. Lee, "Decombined Distributed Parallel VQ Codebook Generation Based on MapReduce", Journal of Digital Contents Society Vol. 15 No. 3 Jun. 2014(pp.365-371) https://doi.org/10.9728/dcs.2014.15.3.365
  15. IDC (2011). "The Digital Universe Study"
  16. ISO/IEC 9126-1. "Software Engineering-Product Quality-Part 1: Quality Model, 2001.
  17. ISO/IEC TR 9126-2. "Software Engineering-Product Quality-Part 2: Internal Metrics, 2003.
  18. Korea Database Promotion Center (2006). "Data Quality Management Maturity Model(Ver. 1.0)"
  19. Mckinsey and Company (2010). "Clouds, Big data and Smart assets: Ten tech-enabled business trends to watch"
  20. Mckinsey Global Institute (2011). "Big Data: The next frontier for innovation, competition and product ivity"
  21. National Information Society Agency(NIA, 2012). "Data resource securing and Quality management plan in Big Data era" IT&FutureStrategy, No.5
  22. Scherr, A. L., "Distributed Data Processing", IBMS ystemsjournal17,4(1978)
  23. Seo et al. (2003). "Hadoop & NoSQL for the massive data analysis and processing, pp.145, 365", Gilbut, ISBN 978-89-6618-503-0 03000
  24. Stevens, W. R., "Unix Network Programming", Prentice-Hall,1990
  25. The Economist (2011). "Data, data everywhere"

피인용 문헌

  1. An Algorithms for Tournament-based Big Data Analysis vol.16, pp.4, 2015, https://doi.org/10.9728/dcs.2015.16.4.545
  2. Design of a Platform for Collecting and Analyzing Agricultural Big Data vol.18, pp.1, 2014, https://doi.org/10.9728/dcs.2017.18.1.149
  3. 오픈소스 DBMS의 성능 품질 평가 vol.45, pp.4, 2014, https://doi.org/10.7469/jksqm.2017.45.4.933
  4. 빅데이터 품질이 기업의 경영성과에 미치는 영향에 관한 연구 vol.12, pp.8, 2014, https://doi.org/10.15207/jkcs.2021.12.8.245