

Curcumin, COX-2, and Protein p300/CBP

Department of Anesthesiology and Pain Medicine, Chosun University School of Medicine, Gwangju, Korea Ki Tae Jung, and Kyung Joon Lim

LETTERS TO EDITORS

Recently, curcumin has received great interest for its emerging role in pain modulation and management [1]. Its anti-nociceptive mechanism is not clear; however, it is part of numerous mechanisms involved in CX3CR1 expression, Mu and Delta opioid receptors, 5-HT (1A) receptors, TNF- α , etc [1].

Recently, I read a report on curcumin which attenuated the pain behavior and serum COX-2 concentration in a rat model of neuropathic pain [2]. That report was of great interest. I have some additional comments about that study.

First, you explained that the decreased COX-2 level after curcumin treatment is associated with the down regulation of the expression of the NF- κ B-regulated gene products such as COX-2 [3]. However, interaction of the RelA subunit of NF- κ B with the general co-activator protein p300/CBP is vital for RelA-dependent gene transcription [4]. Moreover, disruption of this interaction deregulates the NF- κ B pathway by interfering with its negative feedback loop. Another recent study also showed that treatment with 60 mg/kg of curcumin increased the mechanical threshold, as in your study, and reduced COX-2 gene expression [5]. That study revealed that curcumin treatment downregulated the recruitment and altered the

binding of protein p300/CBP at the BDNF and COX-2 promoters. Curcumin seems to alleviate neuropathic pain by inhibiting p300/CBP which acts as a vital co-activator of NF- κ B instead of direct down regulation of the expression of NF- κ B.

Second, curcumin was used 24 hours before making the CCI model and was continued daily to day 7 postligation. However, in a clinical situation, neuropathic pain cannot be easily expected and usually treatment starts after neuropathic pain has developed. Thus, further studies on curcumin as a therapy for neuropathic pain is necessary for application in clinical settings.

REFERENCES

- Kapoor S. Curcumin and its emerging role in pain modulation and pain management. Korean J Pain 2012; 25: 202–3.
- Moini Zanjani T, Ameli H, Labibi F, Sedaghat K, Sabetkasaei M. The attenuation of pain behavior and serum COX-2 concentration by curcumin in a rat model of neuropathic pain. Korean J Pain 2014; 27: 246–52.
- Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti–inflammatory agent, against neurodege– nerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41: 40–59.

Received September 11, 2014. Accepted September 14, 2014.

Correspondence to: Kyung Joon Lim

Department of Anesthesiology and Pain Medicine, Chosun University School of Medicine, 365 Pilmun-daero, Dong-gu, Gwangju 501-717, Korea

Tel: +82-62-220-3223, Fax: +82-62-223-2333, E-mail: kjlim@chosun.ac.kr

[⊕] This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright © The Korean Pain Society, 2014

366 📗 Korean J Pain Vol. 27, No. 4, 2014

- Mukherjee SP, Behar M, Birnbaum HA, Hoffmann A, Wright PE, Ghosh G. Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-κB-driven transcription, PLoS Biol 2013; 11: e1001647.
- Zhu X, Li Q, Chang R, Yang D, Song Z, Guo Q, et al. Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model, PLoS One 2014; 9: e91303.