DOI QR코드

DOI QR Code

Differentiation of True Recurrence from Delayed Radiation Therapy-related Changes in Primary Brain Tumors Using Diffusion-weighted Imaging, Dynamic Susceptibility Contrast Perfusion Imaging, and Susceptibility-weighted Imaging

확산강조영상, 역동적조영관류영상, 자화율강조영상을 이용한 원발성 뇌종양환자에서의 종양재발과 지연성 방사선치료연관변화의 감별

  • Kim, Dong Hyeon (Department of Radiology, Seoul National University College of Medicine) ;
  • Choi, Seung Hong (Department of Radiology, Seoul National University College of Medicine) ;
  • Ryoo, Inseon (Department of Radiology, Seoul National University College of Medicine) ;
  • Yoon, Tae Jin (Department of Radiology, Seoul National University College of Medicine) ;
  • Kim, Tae Min (Department of Internal Medicine, Cancer Research Institute, Seoul National University College of Medicine) ;
  • Lee, Se-Hoon (Department of Internal Medicine, Cancer Research Institute, Seoul National University College of Medicine) ;
  • Park, Chul-Kee (Department of Neurosurgery, Seoul National University College of Medicine) ;
  • Kim, Ji-Hoon (Department of Radiology, Seoul National University College of Medicine) ;
  • Sohn, Chul-Ho (Department of Radiology, Seoul National University College of Medicine) ;
  • Park, Sung-Hye (Department of Pathology, Seoul National University College of Medicine) ;
  • Kim, Il Han (Department of Radiation Oncology, Cancer Research Institute, Seoul National University College of Medicine)
  • 김동현 (서울대학교 의과대학 서울대학교병원 영상의학과) ;
  • 최승홍 (서울대학교 의과대학 서울대학교병원 영상의학과) ;
  • 유인선 (서울대학교 의과대학 서울대학교병원 영상의학과) ;
  • 윤태진 (서울대학교 의과대학 서울대학교병원 영상의학과) ;
  • 김태민 (서울대학교 의과대학 서울대학교병원 내과) ;
  • 이세훈 (서울대학교 의과대학 서울대학교병원 내과) ;
  • 박철기 (서울대학교 의과대학 서울대학교병원 신경외과) ;
  • 김지훈 (서울대학교 의과대학 서울대학교병원 영상의학과) ;
  • 손철호 (서울대학교 의과대학 서울대학교병원 영상의학과) ;
  • 박성혜 (서울대학교 의과대학 서울대학교병원 병리과) ;
  • 김일한 (서울대학교 의과대학 서울대학교병원 방사선종양학과)
  • Received : 2014.05.10
  • Accepted : 2014.06.18
  • Published : 2014.06.30

Abstract

Purpose : To compare dynamic susceptibility contrast imaging, diffusion-weighted imaging, and susceptibility-weighted imaging (SWI) for the differentiation of tumor recurrence and delayed radiation therapy (RT)-related changes in patients treated with RT for primary brain tumors. Materials and Methods: We enrolled 24 patients treated with RT for various primary brain tumors, who showed newly appearing enhancing lesions more than one year after completion of RT on follow-up MRI. The enhancing-lesions were confirmed as recurrences (n=14) or RT-changes (n=10). We calculated the mean values of normalized cerebral blood volume (nCBV), apparent diffusion coefficient (ADC), and proportion of dark signal intensity on SWI (proSWI) for the enhancing-lesions. All the values between the two groups were compared using t-test. A multivariable logistic regression model was used to determine the best predictor of differential diagnosis. The cutoff value of the best predictor obtained from receiver-operating characteristic curve analysis was applied to calculate the sensitivity, specificity, and accuracy for the diagnosis. Results: The mean nCBV value was significantly higher in the recurrence group than in the RT-change group (P=.004), and the mean proSWI was significantly lower in the recurrence group (P<.001). However, no significant difference was observed in the mean ADC values between the two groups. A multivariable logistic regression analysis showed that proSWI was the only independent variable for the differentiation; the sensitivity, specificity, and accuracy were 78.6% (11 of 14), 100% (10 of 10), and 87.5% (21 of 24), respectively. Conclusion: The proSWI was the most promising parameter for the differentiation of newly developed enhancing-lesions more than one year after RT completion in brain tumor patients.

목적: 원발성 뇌종양환자에서 방사선 치료 후 추적 자기공명영상에서 새로 생긴 조영증강 뇌병변에 대해 종양재발과 지연성 방사선치료연관변화의 감별에 있어서 확산강조영상 (DWI), 역동적조영관류영상 (DSC PWI), 자화율강조영상 (SWI)의 진단적 가치를 서로 비교하고자 한다. 대상과 방법: 원발성 뇌종양으로 이전에 방사선치료를 받았던 환자 중, 방사선치료 종료 최소 1년 이후에 추적 자기공명영상에서 새롭게 조영증강 되는 병변을 가진 24명의 환자를 대상으로 연구하였다. 새롭게 조영증강 되는 병변은 14명의 종양재발과 10명의 방사선치료연관변화로 확인되었다. 종양재발과 방사선치료연관변화 두 환자 군의 여러변수들은 비대응표본 t 검정을 실시하여 비교 분석하였다. 다중변수 로지스틱 회귀 분석을 이용하여 DWI, DSC PWI, SWI 각 영상의 정량 분석을 통해 얻은 apparent diffusion coefficient (ADC), normalized cerebral blood volume (nCBV), proportion of dark signal intensity (proSWI) 값 중 두 군을 감별해 내는 최상의 예측 변수 (best predictor)를 정하였다. 이후 수신자 조작 특성 (Receiver operating characteristics, ROC) 분석을 통하여 best predictor의 정확도, 민감도, 특이도를 평가하였다. 결과: 방사선치료연관변화 군과 비교하여 종양재발 군에서 평균 nCBV 값이 유의하게 높았고 (P=.004), 평균 proSWI 값은 유의하게 낮았다 (P<.001). 반면, 평균 ADC 값은 두 군간에 유의한 차이를 보이지 않았다. 다중변수 로지스틱 회귀 분석 결과 proSWI 값만이 통계적으로 유의한, 감별 가능한 독립변수였으며, 민감도, 특이도, 정확도는 각각 78.6% (11 of 14), 100% (10 of 10), 87.5% (21 of 24) 였다. 결론: 뇌종양 환자에서 방사선치료 종료 최소 1년 이후에 새로 보이는 조영증강 병변의 감별에 있어 proSWI 값이 가장 중요한 변수인 것으로 나타났다.

Keywords

References

  1. Wang YX, King AD, Zhou H, et al. Evolution of radiationinduced brain injury: MR imaging-based study. Radiology 2010;254:210-218 https://doi.org/10.1148/radiol.09090428
  2. Mullins ME, Barest GD, Schaefer PW, Hochberg FH, Gonzalez RG, Lev MH. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol 2005;26:1967-1972
  3. Kim HS, Kim JH, Kim SH, Cho KG, Kim SY. Posttreatment high-grade glioma: usefulness of peak height position with semiquantitative MR perfusion histogram analysis in an entire contrast-enhanced lesion for predicting volume fraction of recurrence. Radiology 2010;256: 906-915 https://doi.org/10.1148/radiol.10091461
  4. Chan YL, Leung SF, King AD, Choi PH, Metreweli C. Late radiation injury to the temporal lobes: morphologic evaluation at MR imaging. Radiology 1999;213:800-807 https://doi.org/10.1148/radiology.213.3.r99dc07800
  5. Valk PE, Dillon WP. Radiation injury of the brain. AJNR Am J Neuroradiol 1991;12:45-62
  6. Dooms GC, Hecht S, Brant-Zawadzki M, Berthiaume Y, Norman D, Newton TH. Brain radiation lesions: MR imaging. Radiology 1986;158:149-155 https://doi.org/10.1148/radiology.158.1.3940373
  7. Curran WJ, Hecht-Leavitt C, Schut L, Zimmerman RA, Nelson DF. Magnetic resonance imaging of cranial radiation lesions. Int J Radiat Oncol Biol Phys 1987;13:1093-1098 https://doi.org/10.1016/0360-3016(87)90049-6
  8. Kim YH, Oh SW, Lim YJ, et al. Differentiating radiation necrosis from tumor recurrence in highgrade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 2010;112:758-765 https://doi.org/10.1016/j.clineuro.2010.06.005
  9. Castillo M, Smith JK, Kwock L, Wilber K. Apparent diffusion coefficients in the evaluation of high-grade gliomas. AJNR Am J Neuroradiol 2001;22:60-64
  10. Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999;9:53-60 https://doi.org/10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2
  11. Hein PA, Eskey CJ, Dunn JF, Hug EB. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 2004;25:201-209
  12. Asao C, Korogi Y, Kitajima M, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol 2005;26:1455-1460
  13. Larsen VA, Simonsen HJ, Law I, Larsson HB, Hansen AE. Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis. Neuroradiology 2013;55:361-369 https://doi.org/10.1007/s00234-012-1127-4
  14. Sugahara T, Korogi Y, Tomiguchi S, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrastenhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 2000;21:901-909
  15. Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 2004;9:528-537 https://doi.org/10.1634/theoncologist.9-5-528
  16. Thomas B, Somasundaram S, Thamburaj K, et al. Clinical applications of susceptibility weighted MR imaging of the brain - a pictorial review. Neuroradiology 2008;50:105-116 https://doi.org/10.1007/s00234-007-0316-z
  17. Crossen JR, Garwood D, Glatstein E, Neuwelt EA. Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol 1994;12:627-642
  18. Giglio P, Gilbert MR. Cerebral radiation necrosis. Neurologist 2003;9:180-188 https://doi.org/10.1097/01.nrl.0000080951.78533.c4
  19. Heckl S, Aschoff A, Kunze S. Radiation-induced cavernous hemangiomas of the brain: a late effect predominantly in children. Cancer 2002;94:3285-3291 https://doi.org/10.1002/cncr.10596
  20. Burn S, Gunny R, Phipps K, Gaze M, Hayward R. Incidence of cavernoma development in children after radiotherapy for brain tumors. J Neurosurg 2007;106:379-383
  21. Sheline GE. Radiation therapy of brain tumors. Cancer 1977;39:873-881 https://doi.org/10.1002/1097-0142(197702)39:2+<873::AID-CNCR2820390725>3.0.CO;2-Y
  22. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265 https://doi.org/10.1002/mrm.1910140211
  23. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725 https://doi.org/10.1002/mrm.1910360510
  24. Boxerman JL, Schmainda KM, Weisskoff RM. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859-867
  25. Wetzel SG, Cha S, Johnson G, et al. Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 2002;224: 797-803 https://doi.org/10.1148/radiol.2243011014
  26. Hauck WW, Miike R. A proposal for examining and reporting stepwise regressions. Stat Med 1991;10:711-715 https://doi.org/10.1002/sim.4780100505
  27. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14: 249-265 https://doi.org/10.1002/mrm.1910140211
  28. Hoefnagels FW, Lagerwaard FJ, Sanchez E, et al. Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. J Neurol 2009;256:878-887 https://doi.org/10.1007/s00415-009-5034-5
  29. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2009;30:367-372
  30. Hu LS, Baxter LC, Smith KA, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 2009;30:552-558 https://doi.org/10.3174/ajnr.A1377
  31. Gasparetto EL, Pawlak MA, Patel SH, et al. Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction. Radiology 2009;250:887-896 https://doi.org/10.1148/radiol.2502071444
  32. Stadnik TW, Chaskis C, Michotte A, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 2001;22:969-976.
  33. Schaefer PW, Ozsunar Y, He J, et al. Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol 2003;24:436-443
  34. Guo AC, Cummings TJ, Dash RC, Provenzale JM. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 2002;224:177-183 https://doi.org/10.1148/radiol.2241010637
  35. Matsusue E, Fink JR, Rockhill JK, Ogawa T, Maravilla KR. Distinction between glioma progression and post-radiation change by combined physiologic MRimaging. Neuroradiology 2010;52:297-306 https://doi.org/10.1007/s00234-009-0613-9
  36. Tung GA, Evangelista P, Rogg JM, Duncan JA. Diffusionweighted MR imaging of rim-enhancing brain masses: is markedly decreased water diffusion specific for brain abscess? AJR Am J Roentgenol 2001;177:709-712 https://doi.org/10.2214/ajr.177.3.1770709
  37. Holtas S, Geijer B, Stromblad LG, Mary-Sundgren P, Burtscher IM. A ring-enhancing metastasis with central high signal on diffusion-weighted Imaging and low apparent diffusion coefficients. Neuroradiology 2000;42:824-827 https://doi.org/10.1007/s002340000431
  38. Biousse V, Newman NJ, Hunter SB, Hudgins PA. Diffusion weighted imaging in radiation necrosis. J Neurol Neurosurg Psychiatry 2003;74:382-384 https://doi.org/10.1136/jnnp.74.3.382
  39. Burger PC, Boyko OB. The pathology of central nervous system radiation injury. In Gutin PH, Leibel SA, Sheline GE, eds. Radiation Injury to the Central Nervous System. New York, NY: Raven, 1991: 191-208
  40. Silvera S, Oppenheim C, Touze′E, et al. Spontaneous intracerebral hematoma on diffusion-weighted images: influence of T2- shine-through and T2-blackout effects. AJNR Am J Neuroradiol 2005;26:236-241
  41. Gaensler EH, Dillon WP, Edwards MS, Larson DA, Rosenau W, Wilson CB. Radiation-induced telangiectasia in the brain simulates cryptic vascular malformations at MR imaging. Radiology 1994;193:629-636 https://doi.org/10.1148/radiology.193.3.7972799
  42. Zeng QS, Kang XS, Li CF, Zhou GY. Detection of hemorrhagic hypointense foci in radiation injury region using susceptibilityweighted imaging. Acta Radiol 2011;52:115-119 https://doi.org/10.1258/ar.2010.100220
  43. Poussaint TY, Siffert J, Barnes PD, et al. Hemorrhagic vasculopathy after treatment of central nervous system neoplasia in childhood: diagnosis and follow-up. AJNR Am J Neuroradiol 1995;16:693-699
  44. Llena JF, Cespedes G, Hirano A, Zimmerman HM, Feiring EH, Fine D. Vascular alterations in delayed radiation necrosis of the brain. An electron microscopical study. Arch Pathol Lab Med 1976;100:531-534
  45. Okeda R, Shibata T. Radiation encephalopathy: an autopsy case and some comments on the pathogenesis of delayed radionecrosis of the central nervous system. Acta Pathol Jpn 1973;23:867-883