DOI QR코드

DOI QR Code

Induction of Soft Tunic Syndrome by Water Temperature and Physiological and Histological Responses of the Sea Squirt, Halocynthia roretzi

수온에 의한 멍게(Halocynthia roretzi)의 물렁증 유도와 생리 및 조직학적 반응

  • Shin, Yun Kyung (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Park, Jung Jun (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Myeong, Jeong In (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Kim, Hyejin (Department of Aqualife Medicine, Chonnam National University) ;
  • Lee, Jung Sick (Department of Aqualife Medicine, Chonnam National University)
  • 신윤경 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 박정준 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 명정인 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 김혜진 (전남대학교 수산생명의학과) ;
  • 이정식 (전남대학교 수산생명의학과)
  • Received : 2014.08.05
  • Accepted : 2014.09.11
  • Published : 2014.09.30

Abstract

In this study, we investigated the changes in the physiological and histological traits of a sea squirt (Halocynthia roretzi) with the emergence of the soft tunic syndrome induced by the water temperature control (6, 9, 12, 15, 18, 21, 24 and $27^{\circ}C$). It was observed that the induction rate of the soft tunic syndrome was highest at $15^{\circ}C$, but lowest at $24^{\circ}C$. Based on the tunic color condition and contraction strength, the whole process were classified into 4 stages as S0, S1, S2 and S3. Interestingly, there were significant differences in oxygen consumption and filtration rate were observed during S0-S3. The most distinctive aspects were change of blood cell composition at stage S3, whereas multi-vacuole cell ratio was decreased by 1/2 and morula cell ratio expanded about 10 times during S0-S3. Further, change of organ structure started following the syndrome such as degeneration of epithelial cells, microfilaments, increment in hemocytes and damage in muscle fiber have been detected in tunic, siphon, branchial sac, body wall musculature and pyloric gland. Briefly, our study results indicated that the normal physiological functions of the sea squirt can be affected due to the soft tunic syndrome induced by water temperature.

수온조절 (6, 9, 12, 15, 18, 21, 24, $27{\circ}^C$)에 의해 유도된 멍게의 물렁증 진행에 따른 생리학적 특성을 연구하였다. 수온조절에 의한 물렁증 유도율은 수온 $15^{\circ}C$에서 가장 높았으며, $24^{\circ}C$에서 가장 낮았다. 물렁증은 피낭 색깔 및 탄성을 기준으로 S0, S1, S2, S3의 4단계로 구분하였다. 정상개체와 물렁증을 가진 개체들 사이에서 산소소비율과 여수율은 유의한 차이를 보였다. S0에 비해 S3단계에서 혈구 구성비의 가장 뚜렷한 변화는 multi-vacuole cell은 약 1/2 감소하였으며, morula cell은 약 10배 증가하였다. 기관계 구조의 변화는 피낭, 수관, 새낭, 육질부, 소화선에서 상피세포의 변성, 미세섬유의 변성, 혈구의 증가 및 근섬유의 변형이 확인 되었다. 이러한 모든 특징들은 멍게의 정상적인 생리학적 기능에 영향을 미칠 수 있다.

Keywords

References

  1. Armsworthy SL, BA MacDonald and JE Ward. 2001. Feeding activity, absorption efficiency and suspension feeding processes in the ascidian, Halocynthia pyriformis (Stolidobranchiata: Ascidiacea): responses to variations in diet quantity and quality. J. Exp. Mar. Biol. Ecol. 260:41-69. https://doi.org/10.1016/S0022-0981(01)00238-6
  2. Ballarin L, A Franchini, E Ottaviani and A Sabbadin. 2001. Morula cells as the major immunomodulatory hemocytes in ascidians: Evidences from the colonial species Botryllus schlosseri. Biol. Bull. 201:59-64. https://doi.org/10.2307/1543526
  3. Bayne BL and RC Newell. 1983. Physiological energetics of marine molluscs. pp.407-515. In the Mollusca, Vol. 4. (Wilburg KM and ASM Saleuddin eds.). Academic Press, London.
  4. Burighel P and RA Cloney. 1997. Urochordata: Ascidiacea. pp. 221-647. In microscopic anatomy of invertebrates, Vol. 15, Hemichordata, Chaetognatha, and the invertebrate chordates (Harrison FW and EE Ruppert eds.). Wiley-Liss, New York.
  5. Cima F, A Perin, P Burighel and L Ballarin. 2001. Morpho-functional characterization of haemocyes of the compound ascidian Botrylloides leachi (Tunicata, Ascidiacea). Acta. Zool. 82:261-274. https://doi.org/10.1046/j.1463-6395.2001.00087.x
  6. Cole HA and BT Hepper. 1954. The use of neutral red solution for the comparative study of filtration rate of lamellibranchs. J. Cons. Int. Explror. Mer. 20:197-203. https://doi.org/10.1093/icesjms/20.2.197
  7. Frizzo A, L Guidolin, L Ballarin, B Baldan and A Sabbadin. 2000. Immunolocation of phenoloxidase in vacuoles of the compound ascidian Botryllus schlosseri morula cells. Ital. J. Zool. 67:273-276. https://doi.org/10.1080/11250000009356323
  8. Goodbody I. 1974. The physiology of Ascidians. Ade. Mar. Biol. 12:1-149.
  9. Hirose E, M Shirae and Y Saito. 2003. Ultrastructures and classification of circulating hemocytes in 9 botryllid ascidians (Chordata: Ascidiacea). Zool. Sci. 20:647-656. https://doi.org/10.2108/zsj.20.647
  10. Jorgensen CB. 1949. Feeding-rates of sponges, lamellibranchs and ascidian. Nature 163:912.
  11. Jorgensen CB. 1955. Quantitative aspects of filter-feeding in invertebrates. Biol. Rev. 30:391-454.
  12. Kim HJ, JS Park, KH Park, YK Shin and KI Park. 2014. The kinetoplastid parasite Azumiobodo hoyamushi, the causative agent of soft tunic syndrome of the sea squirt Halocynthia roretzi, resides in the East Sea of Korea. J. Invertebr. Pathol. 116:36-42. https://doi.org/10.1016/j.jip.2013.12.006
  13. Kim SH, HO Yang, YC Sohn and HC Kwon. 2010. Aeromicrobium halocynthiae sp. nov., a taurocholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi. Int. J. Syst. Evol. Microbiol. 60:2793-2798. https://doi.org/10.1099/ijs.0.016618-0
  14. Kitamura SI, SI Ohtake, JY Song, SJ Jung, MJ Oh, BD Choi, K Azumi and E Hirose. 2010. Tunic morphology and viral surveillance in diseased Korean ascidians: soft tunic syndrome in the edible ascidian, Halocynthia roretzi (Drasche), in aquaculture. J. Fish Dis. 33:153-160. https://doi.org/10.1111/j.1365-2761.2009.01103.x
  15. KSSZ (Korean Society of Systematic Zoology). 1997. List of animals in Korea (excluding insects). Academy Press, Seoul.
  16. Kumagai A, A Suto, H Ito, T Tanabe, JY Song, SI Kitamura, E Hirose, T amaishi and S Miwa. 2011. Soft tunic syndrome in the edible ascidian Halocynthia roretzi is caused by a kinetoplastid protist. Dis. Aquat. Organ. 95:153-161. https://doi.org/10.3354/dao02372
  17. Kumagai A, A Suto, H Ito, T Tanabe, K Takahashi, T Kamaishi and S Miwa. 2010. Mass mortality of cultured ascidians Halocynthia roretzi associated with softening of the tunic and flagellate-like cells. Dis. Aquat. Organ. 90:223-234. https://doi.org/10.3354/dao02228
  18. Lee DG, MW Park, BH Kim, H Kim, MA Jeon and JS Lee. 2014. Microanatomy and ultrastructure of outer mantle epidermis of the cuttlefish, Sepia esculenta (Cephalopoda: Sepiidae). Micron 58:38-46. https://doi.org/10.1016/j.micron.2013.11.004
  19. Magnuson JJ, LB Crowder and PA Medvick. 1979. Temperature as an ecological resource. Amer. Zool. 19:331-343. https://doi.org/10.1093/icb/19.1.331
  20. Milanesi C and P Burighel. 1978. Blood cell ultrastructure of the ascidian Botryllus schlosseri. I. Hemoblast, granulocytes, macrophage, morula cell and nephrocyte. Acta. Zool. 59:135-147. https://doi.org/10.1111/j.1463-6395.1978.tb01029.x
  21. Newell RC and LH Kofoed. 1977. Adjustment of the components of energy balance in the gastropod Crepidula fornicate in response to thermal acclimation. Mar. Biol. 44:275-286. https://doi.org/10.1007/BF00387708
  22. NFRDI. 2009. The studies on stability of cultured sea squirt aquaculture fisheries. Project report. NFRDI, Busan.
  23. Shin YK, HJ Kim, KI Park, MS Choi, JC Jun and EO Kim. 2011a. Occurrences of bi-flafellated protists in the tunics of ascidians Halocynthia roretzi with tunic-softness syndrome collected from Tonyeong, South coast of Korea. J. Fish Pathol. 24:197-204. https://doi.org/10.7847/jfp.2011.24.3.197
  24. Shin YK, JC Jun, EO Kim and YB Hur. 2011b. Physiological changes and energy budget of the sea squirt Halocynthia roretzi from Tongyeong, south coast of Korea. Kor. J. Fish. Aquat. Sci. 44:366-371.
  25. Shin YK, JC Jun, MH Son, H Kim and JS Lee. 2012. Classification and ultrastructure of hemocytes in the tunicate (Halocynthia roretzi) (Ascidiacea: Pyuridae). Kor. J. Fish. Aquat. Sci. 45:480-485.
  26. Singley CT. 1982. Histochemistry and fine structure of the ectodermal epithelium of the sepiolid squid Euprymna scolopes. Malacologia 23:177-192.
  27. Song JK, HM Yun, BD Choi, MJ Oh and SJ Jung. 2009. Isolation of marine birnavirus from ascidian Halocynthia roretzi, and its relation with tunic softness syndrome. J. Fish. Pathol. 22:229-237.
  28. Stuart V and DW Klumpp. 1984. Evidence for food-resource partitioning by kelp-bed filter feeders. Mar. Ecol. Prog. Ser. 16:27-37. https://doi.org/10.3354/meps016027
  29. Zhang CI and HS Lim. 1990. Population ecological study of cultured sea squirt (Halocynthia roretzi) and management implications. J. Aquaculture 3:49-63.