DOI QR코드

DOI QR Code

파랑-흐름의 상호작용 하에서 지형변동에 관한 3차원 연성 수치모델의 개발

Development of a 3-D Coupled Hydro-Morphodynamic Model between Numerical Wave Tank and Morphodynamic Model under Wave-Current Interaction

  • 이우동 (국립경상대학교 해양산업연구소) ;
  • 허동수 (국립경상대학교 해양토목공학과)
  • 투고 : 2014.03.05
  • 심사 : 2014.07.23
  • 발행 : 2014.10.01

초록

본 연구에서는 파랑과 흐름이 공존하는 하구 주변의 수리특성 및 지형변동특성을 이해하기 위하여 새롭게 3차원 지형변동 모델을 개발함과 더불어 3차원 파동장 모델과 양방향 연성 수치모델을 제안하였다. 그리고 파랑-흐름 공존장에서의 파고분포, 연직유속분포, 해저파이프라인 저면의 지형변동 및 고립파 내습 시에 해빈 저면 부유사 농도의 시간분포에 관한 수리모형실험결과들과 비교 분석하여 개발한 연성 수치모델을 검증하였다. 이로써 본 연구에서 개발한 연성 수치모델의 타당성 및 유효성을 확보할 수 있을 뿐만 아니라, 이 연성 수치모델이 파랑과 흐름이 공존하는 하구지역의 지형변동 예측에 적용이 가능한 것을 확인하였다.

In order to understand hydrodynamic and morphodynamic characteristics under wave-current interactions in an estuary, a coupled model for two-way analysis between existing 3-d numerical wave tank and newly-developed 3-d morphodynamic model has been suggested. Comparing to existing experimental results it is revealed that computed results of the newly-suggested model are in good agreement with each laboratory test result for wave height distribution, vertical flow profile and topographical change around ocean floor pipeline in wave-current coexisting field. Also the numerical result for suspended sediment concentration is verified in comparison with experimental result in solitary wave field. Finally, it is shown that the 3-D coupled Hydro-Morphodynamic model suggested in this study is applicable to morphological change under wave-current interaction in an estuary.

키워드

참고문헌

  1. Bagnold, R. A. (1954). "Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear." Proc. R. Soc. Lond., Vol. 225, pp. 49-63. https://doi.org/10.1098/rspa.1954.0186
  2. Brackbill, J. U., Kothe, D. B. and Zemach, C. (1992). "A continuum model for modeling surface tension." J. Comp. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  3. Cheng, N. S. (2008). "Formulas for friction factor in transitional regimes." J. Hydr. Eng., ASCE, Vol. 134, pp. 1357-1362. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1357)
  4. Cheng, N. S. and Chiew, Y. M. (1998). "Modified logarithmic law for velocity distribution subjected to upward seepage." J. Hydr. Eng., ASCE, Vol. 124, pp. 1235-1241. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:12(1235)
  5. Cummins, S. J., Francois, M. M. and Kothe, D. B. (2005). "Estimating curvature from volume fractions." Comput. Struct., Vol. 83, pp. 425-434. https://doi.org/10.1016/j.compstruc.2004.08.017
  6. de Brye, B., de Brauwere, A., Gourgue, O., Karna, T., Lambrechts, J., Comblen R. and Deleersnijder, E. (2010). "A finite-element, multi-scale model of the Scheldt tributaries, River, Estuary and ROFI." Coastal Eng., Vol. 57, pp. 850-863. https://doi.org/10.1016/j.coastaleng.2010.04.001
  7. Donnell, J. O. (1997). "Observations of near-surface currents and hydrography in the connecticut river plume with the surface current and density array." J. Geophys. Res., Vol. 102, No. C11, pp. 25021-25033. https://doi.org/10.1029/97JC01008
  8. Einstein, H. A. and Chien, N. (1955). "Effects of heavy sediment concentration near the bed on velocity and sediment distribution." U.S. Army Engineer Division, Missouri River, M.R.D. Sediment Series, No. 8, p. 78.
  9. Ergun, S. (1952). "Fluid flow through packed columns." Chemical Eng., Vol. 48, No. 2, pp. 89-94.
  10. Farhanieh, B., Firoozabadi, B. and Rad, M. (2001). "The propagation of turbulent density currents on sloping beds." Scientia Iranica, Vol. 8, pp. 130-137.
  11. Ford, D. E. and Johnson L. S. (1986). An assessment of reservoir mixing process, Technical Re. E-86-7, U.S. Army Engineers Waterways Experiment Station, Vicksburg, p. 147.
  12. Germano, M., Piomelli, U., Moin, P. and Cabot, W. H. (1991). "A dynamic subgrid-scale eddy viscosity model." Physics of Fluids, Vol. 3, pp. 1760-1765. https://doi.org/10.1063/1.857955
  13. Gill, A. E. (1982). "Atmosphere-ocean dynamics." Academic Press, New York.
  14. Herbers, T. H. and Jansen, T. T. (2010). Wave-current interaction in coastal inlets and river mouths, Annual Rept. Naval Postgraduate School, Monterey, CA. Dept. of Oceanography.
  15. Hur, D. S., Lee, W. D. and Bae, K. S. (2008). "On reasonable boundary condition for inclined seabed/structure in case of the numerical model with quadrilateral mesh system." Korean Society of Civil Engineers, KSCE, Vol. 28, pp. 591-594 (in Korean).
  16. Hur, D. S., Lee, W. D. and Cho, W. C. (2012). "Three-dimensional flow characteristics around permeable submerged breakwaters with open inlet." Ocean Eng., Vol. 44, pp. 100-116. https://doi.org/10.1016/j.oceaneng.2012.01.029
  17. Ibrahim, Z. and Latiff, A. A. A., Aziz and Halim, A. H. A., Bakar, N. A. and Subramaniam, S. (2008). "Experimental studies on mixing salt wedge estuary." Malaysian J. Civil Eng., Vol. 20, No. 2, pp. 188-199.
  18. Iwasaki, T. and Sato, M. (1970). "Energy damping of wave propagating against currents." Proc. Coastal Eng. Conf., JSCE, Vol. 17, pp. 41-46 (in Japanese).
  19. Iwasaki, T. and Sato, M. (1971). "Energy damping of wave propagating against currents (II)." Proc. Coastal Eng. Conf., JSCE, Vol. 18, pp. 55-60 (in Japanese).
  20. Kim, K. H., Lee, H. J. and Kim, W. S. (2008). "The local scour around submarine pipelines in the interaction region combined with waves and currents." Korean Society of Coastal and Ocean Eng., Vol. 20, No. 5, pp. 510-521 (in Korean).
  21. Lambe, T. W. and Whitman, R. V. (1969). Soil mechanics, John Wiley & Sons, Inc., New York, p. 553.
  22. Lee, K. H. and Mizutani, N. (2007). "Wave-current interaction for waves propagating against currents." Int. J. Offshore and Polar Eng., Vol. 17, No. 4, pp. 259-265.
  23. Lee, W. D. and Hur, D. S. (2014). "Development of 3-D hydrodynamical model for understanding numerical analysis of density current due to salinity and temperature and its verification." J. Korean Society of Civil Eng., Vol. 34, No. 3, pp. 859-871 (in Korean). https://doi.org/10.12652/Ksce.2014.34.3.0859
  24. Lee, W. D., Hur, D. S. and Goo, N. H. (2014). "A numerical study on tsunami tun-up heights on impermeable/permeable slope." J. Korean Society of Coastal Disaster Prevention, Vol. 1, No. 1, pp. 1-9 (in Korean).
  25. Lee, W. D., Mizutani, N. and Hur, D. S. (2011). "Effect of crossing angle on interaction between wave and current in the river mouth." J. Japan Society of Civil Eng., Ser. B3 (Ocean Eng.), Vol. 67, pp. 256-261 (in Japanese).
  26. Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M. and Stelling, G. S. (2004). "Development and validation of a three-dimensional morphological model." Coastal Eng., Vol. 51, pp. 883-915. https://doi.org/10.1016/j.coastaleng.2004.07.014
  27. Liang, B., Zhao, H., Li, H. and Wu, G. (2012). "Numerical study of three-dimensional wave-induced longshore current's effects on sediment spreading of the Huanghe River mouth." Acta Oceanologica Sinica, Vol. 31, No. 2, pp. 129-138. https://doi.org/10.1007/s13131-012-0199-7
  28. Lilly, D. K. (1991). "A proposed modification of the Germano subgrid-scale closure method." Phy. Fluids, Vol. 4, pp. 633-635.
  29. Liu, S. and Masliyah, J. H. (1999). "Non-linear flows porous media." J. Non-Newtonian Fluid Mech., Vol. 86, pp. 229-252. https://doi.org/10.1016/S0377-0257(98)00210-9
  30. Nguyen, X. T., Tanaka, H. and Nagabayashi, H. (2007). "Wave setup at river and inlet entrances due to an extreme event." Proc. Int. Conf. on Violent Flows.
  31. Petersen, T. U., Sumer, B. M. and Fredsoe, J. (2012). "Time scale of scour around a pile in combined waves and current." Proc. 6 th Int. Conf. on Scour and Erosion.
  32. Riley, J. P. and Skirrow, G. (1965). "Chemical oceanography." Academic Press, Vol. 3.
  33. Roulund, A., Sumer, B. M., Fredsoe, J. and Michelsen, J. (2005). "Numerical and experimental investigation of flow and scour around a circular pile." J. Fluid Mech., Vol. 534, pp. 351-401. https://doi.org/10.1017/S0022112005004507
  34. Sakakiyama, T. and Kajima, R. (1992). "Numerical simulation of nonlinear wave interacting with permeable breakwater." Proc. 23rd Int. Conf. on Coastal Eng., ASCE, Venice, pp. 1517-1530.
  35. Shi, F., Dalrymple, R. A., Kirby, J. T., Chen, Q. and Kennedy, A. (2001). "A fully nonlinear Boussinesq model in generalized curvilinear coordinates." Coastal Eng., Vol. 42, pp. 337-358. https://doi.org/10.1016/S0378-3839(00)00067-3
  36. Smagorinsky, J. (1963). "General circulation experiments with the primitive equation." Mon. Weath. Rev., Vol. 91, No. 3, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  37. Smith, J. M., Seabergh, W. C., Harkins, G. S. and Briggs, M. J. (1998). Wave breaking on a current at an idealized inlet, Rept. CHL-98-31, US Army Corps of Engineers.
  38. Soulsby, R. L. (1997). Dynamics of marine sands, Thomas Relford Publications, p. 249.
  39. Soulsby, R. L. and Whitehouse, R. J. S. W. (1997). "Threshold of sediment motion in coastal environments." Proc. Pacific Coasts and Ports '97 Conf., Vol. 1, pp. 149-154.
  40. Sutherlanda, J., Walstrab, D. J. R., Cheshera, T. J., van Rijn, L. C. and Southgate, H. N. (2004). "Evaluation of coastal area modelling systems at an estuary mouth." Coastal Eng., Vol. 51, pp. 119-142. https://doi.org/10.1016/j.coastaleng.2003.12.003
  41. Tanaka, H., Nagabayashi, H. and Yamauchi, K. (2000). "Observation of wave set-up height in a river mouth." Proc. 27th Int. Conf. on Coastal Eng., ICCE, pp. 3458-3471.
  42. Umeyama, M. (2005). "Reynolds stresses and velocity distributions in a wave-current coexisting environment." J. Waterway, Port, Coastal, Ocean Eng., Vol. 131, pp. 203-212. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:5(203)
  43. van Rijn, L. C. (1984a). "Sediment transport, Part I: Bed load transport." J. Hydr. Eng., ASCE, Vol. 110, pp. 1431-1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
  44. van Rijn, L. C. (1984b). "Sediment transport, Part II: Suspended load transport." J. Hydr. Eng., ASCE, Vol. 110, pp. 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
  45. van Rijn, L. C. and Walstra, D. J. R. (2003). "Modelling of sand transport in DELFT3D." WL Delft Hydr. Re. Vol. Z3624, Delft Hydr., The Netherlands.
  46. Xiong, Y. (2010). Coupling sediment transport and water quality models, Ph.D. Thesis, Mississippi State Univ., USA, p. 275.
  47. Young, Y. L. and Xiao, H. (2008). "Enhanced sediment transport due to wave-soil interactions." Proc. NSF Eng. Res. and Innovation Conf., Knoxville, Tennessee.
  48. Zhang, Q. H., Tan, F., Han, T., Wang, X. Y., Hou, Z. Q. and Yang, H. (2010). "Simulation of sorting sedimentation in the channel of Huanghua harbor by using 3d multi-sized sediment transport model of EFDC." Proc. Int. 32nd Conf. on Coastal Eng., ICCE, No. 32.

피인용 문헌

  1. Analysis on Mechanism of Wave Attenuation under Wave-Current Interaction vol.36, pp.4, 2016, https://doi.org/10.12652/Ksce.2016.36.4.0645
  2. Applicability of Permeable Submerged Breakwater for Discharged Flow Control vol.49, pp.1, 2016, https://doi.org/10.3741/JKWRA.2016.49.1.51
  3. Numerical Simulation of Local Scour in Front of Impermeable Submerged Breakwater Using 2-D Coupled Hydro-morphodynamic Model vol.30, pp.6, 2016, https://doi.org/10.5574/KSOE.2016.30.6.484
  4. Application of 3-D Numerical Wave Tank for Dynamic Analysis of Nonlinear Interaction between Tsunami and Vegetation vol.36, pp.5, 2016, https://doi.org/10.12652/Ksce.2016.36.5.0831