References
- Ma, P. X., 2004, "Scaffolds for Tissue Fabrication," Materials today, Vol. 7, No. 5, pp. 30-40.
- Sachlos, E. and Czernuszka, J. T., 2003, "Making Tissue Engineering Scaffolds Work. Review: the Application of Solid Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds," Eur. Cell Mater., Vol. 5 No. 29, pp. 39-40.
- Ho, M. H., Kuo, P. Y., Hsieh, H. J., Hsien, T. Y., Hou, L. T., Lai, J. Y. and Wang, D. M., 2004, "Preparation of Porous Scaffolds by Using Freeze-extraction and Freeze-gelation Methods, " Biomaterials, Vol. 25, No. 1, pp. 129-138. https://doi.org/10.1016/S0142-9612(03)00483-6
- Lo, H., Ponticiello, M. S. and Leong, K. W., 1995, "Fabrication of Controlled Release Biodegradable Foams by Phase Separation," Tissue engineering, Vol. 1, No. 1, pp. 15-28. https://doi.org/10.1089/ten.1995.1.15
- Nam, Y. S., Yoon, J. J. and Park, T. G., 2003, "A Novel Fabrication Method of Macroporous Biodegradable Polymer Scaffolds Using Gas Foaming Salt as a Porogen Additive," Biomaterials, Vol. 24, No. 13, pp. 2323-2329. https://doi.org/10.1016/S0142-9612(03)00024-3
- Liao, C. J., Chen, C. F., Chen, J. H., Chiang, S. F., Lin, Y. J. and Chang, K. Y., 2002, "Fabrication of Porous Biodegradable Polymer Scaffolds Using a Solvent Merging/Particulate Leaching Method," Journal of biomedical materials Research: Part A, Vol. 59, No. 4, pp. 676-681. https://doi.org/10.1002/jbm.10030
- Hutmacher, D. W., Sittinger, M. and Risbud, M. V., 2004, "Scaffold-based Tissue Engineering: Rationale for Computer-aided Desing and Solid Free-form Fabrication Systems," TRENDS in Biotechnology, Vol. 22, No. 7, pp. 354-362. https://doi.org/10.1016/j.tibtech.2004.05.005
- Yeong, W.-Y., Chua, C.-K., Leong, K.-F. and Chandrasekaran, M, 2004, "Rapid Prototyping in Tissue Engineering: Challenges and Potential," TRENDS in Biotechnology, Vol. 22, No. 12, pp. 643-652. https://doi.org/10.1016/j.tibtech.2004.10.004
- Seol, Y.-J., Kang, T.-Y. and Cho, D.-W., 2012, "Solid Freeform Fabrication Technology Applied to Tissue Engineering with Various Biomaterials," Soft matter, Vol. 8, No. 6, pp. 1730-1735. https://doi.org/10.1039/c1sm06863f
- Giannitelli, S. M., Accoto, D., Trombetta, M. and Rainer, A., 2014, "Current Trends in the Design of Scaffolds for Computer-aided Tissue Engineering," Acta Biomaterialia, Vol. 10, No. 2, pp. 580-594. https://doi.org/10.1016/j.actbio.2013.10.024
- Leong, K. F., Cheah, C. M. and Chua, C. K., 2003, "Solid Freeform Fabrication of Three-dimensional Scaffolds for Engineering Replacement Tissues and Organs," Biomaterials, Vol. 24, No. 13, pp. 2363-2378. https://doi.org/10.1016/S0142-9612(03)00030-9
- Hollister, S. J., 2005, "Porous Scaffold Design for Tissue Engineering," Nature materials, Vol. 4, No. 7, pp. 518-524. https://doi.org/10.1038/nmat1421
- Jung, J. W., Kang, H.-Y., Kang, T.-Y., Park, J. and Cho, D.-W., 2012, "Projection Image-generation Algorithm for Fabrication of a Complex Structure using Projection-based Microstereolithography," International Journal of Precision Engineering and Manufacturing, Vol. 13, No. 3, pp. 445-449. https://doi.org/10.1007/s12541-012-0057-8
- Cho, D.-W. and Kang, H.-Y., 2012, Computer-Aided Tissue Engineering, Humana Press, New York, pp. 341-356.
- Kang, H.-Y., Park, J. H., Kang, T.-Y., Seol, Y.-J. and Cho, D.-W., 2012, "Unit Cell-based Computer-aided Manufacturing System for Tissue Engineering," Biofabrication, Vol. 4, No. 1, 015005. https://doi.org/10.1088/1758-5082/4/1/015005
- Lee, S.-J., Kang H.-Y., Park, J. K., Rhie, J.-W., Hahn, S. K. and Cho, D.-W., 2008, "Application of Microstereolithography in the Development of Threedimensional Cartilage Regeneration Scaffolds," Biomedical Microdevices, Vol. 10, No. 2 pp. 233-241. https://doi.org/10.1007/s10544-007-9129-4
- Choi, J. S., Kang, H.-Y., Lee, I. H., Ko, T. J. and Cho, D.-W., 2009, "Development of Micro-Stereolithography Technology Using a UV Lamp and Optical Fiber," International Journal of Advanced Manufacturing Technology, Vol. 41, No. 3-4, pp. 281-286. https://doi.org/10.1007/s00170-008-1461-1
- Kang, H.-Y., Park, J. H. and Cho, D.-W., 2012, "A Pixel based Solidification Model for Projection based Stereolithography Technology," Sensor and Actuator A: Physical, Vol. 178, pp223-229. https://doi.org/10.1016/j.sna.2012.01.016
- Kim, J. Y., Park, J. K., Hahn, S. K. Kwon, T. H. and Cho, D.-W., 2009, "Development of the Flow Behavior Model for 3D Scaffold Fabrication in the Polymer Deposition Process by a Heating Method," Journal of Micromechanics and Microengineering, Vol. 19, No. 10, 105003. https://doi.org/10.1088/0960-1317/19/10/105003
- Shim, J.-H., Kim, J. Y., Park, J. K., Hahn, S. K., Rhie, J.-W., Kang, S.-W., Lee, S.-H. and Cho, D.-W., 2010, "Effect of Thermal Degradation of SFF-based PLGA Scaffolds Fabricated Using a Multi-head Deposition System Followed by Change of Cell Growth Rate," Journal of Biomaterials Science, Polymer Edition, Vol. 21, No. 8-9, pp. 1069-1080. https://doi.org/10.1163/092050609X12457428919034
- Tan, K. H., Chua, C. K., Leong, K. F., Cheah, C. M., Cheang, P., Abu Bakar, M. S. and Cha, S. W., 2003, "Scaffold Development Using Selective Laser Sintering of Polyetheretherketone-hydroxyapatite Biocomposite Blends," Biomaterials, Vol. 24, No. 18, pp. 3115-3123. https://doi.org/10.1016/S0142-9612(03)00131-5
- Williams, J. M., Adewunmi, A., Schek, R. M., Flanagan, C. L., Krebsbach, P. H., Feinberg, Hollister S. J. and Das, S., 2005, "Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated via Selective Laser Sintering," Biomaterials, Vol. 26, No. 23, pp. 4817-4827. https://doi.org/10.1016/j.biomaterials.2004.11.057
- Hollister, S. J., 2009, "Scaffold Design and Manufacturing: from Concept to Clinic," Advanced materials, Vol. 21, No. 32-33, pp. 3330-3342. https://doi.org/10.1002/adma.200802977
- Lee J.-S., Cha H. D., Shim J.-H., Jung J. W., Kim J. Y. and Cho D.-W., 2012, "Effect of Pore Architecture and Stacking Direction on Mechanical Properties of Solid Freeform Fabrication based Scaffold for Bone Tissue Engineering," Journal of Biomedical Materials Research Part A, Vol. 100A, No. 7, pp. 1846-1853. https://doi.org/10.1002/jbm.a.34149
- Hutmacher, D.W., Schantz, J. T., Zein, I., Ng, K. W., Tan, K. C. and Teoh, S. H., 2001, "Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling," Journal of Biomedical Materials Research, Vol. 55, No. 2, pp. 203-216. https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
-
Shim, J.-H., Huh, J.-B., Park, J. Y., Jeon, Y.-C., Kang, S. S., Kim, J. Y., Rhie, J.-W. and Cho, D.-W., 2013, "Fabrication of Blended Polycaprolactone/Poly (lacticco- glycolic acid)/
$\beta$ -Tricalcium Phosphate Thin Membrane using Solid Freeform Fabrication Technology for Guided Bone Regeneration," Tissue Engineering Part A, Vol. 19, No. 3-4, pp. 317-328. https://doi.org/10.1089/ten.tea.2011.0730 - Shim, J.-H., Kim, S. E., Park, J. Y., Kundu, J., Kim, S. W., Kang, S. S. and Cho, D.-W., 2014, "3D Printing of rhBMP-2 Loaded Scaffolds with Long-term Delivery for Enhanced Bone Regeneration in a Rabbit Diaphyseal Defect," Tissue Engineering Part A, Accepted for publication.
- Kim, J.-Y., Jin, G.-Z., Park, I. S., Kim, J.-N., Chun, S. Y., Park, E. K., Kim, S.-Y., Yoo, J., Kim, S.-H., Rhie, J.-W. and Cho, D.-W., 2010, "Evaluation of SFF-based Scaffolds Seeded with Osteoblasts and HUVECs for Use in vivo Osteogenesis," Tissue Engineering Part A, Vol. 16, No. 7, pp. 2229-2236. https://doi.org/10.1089/ten.tea.2009.0644
- Kang, S.-W., Lee, S.-J., Kim, J.-S., Choi, E.-H., Cha, B.-H., Shim, J.-H., Cho, D.-W. and Lee, S.-H., 2010, "Effect of a Scaffold Fabricated Thermally from Acetylated PLGA on the Formation of Engineered Cartilage," Macromolecular Bioscience, Vol. 11, No. 2, pp. 267-274.
- Seol, Y.-J., Park, D. Y., Park, J. Y., Kim, S. W., Park, S. J. and Cho, D.-W., 2013, "A New Method of Fabricating Robust Freeform 3D Ceramic Scaffolds for Bone Tissue Regeneration," Biotechnology and Bioengineering, Vol. 110, No. 5, pp. 1444-1455. https://doi.org/10.1002/bit.24794
- Kang, K. S., Lee, S. -I., Hong, J. M., Lee, J. W., Cho, H. Y., Son, J. H., Paek, S. H. and Cho, D.-W., 2014, "Hybrid Scaffold Composed of Hydrogel/3Dframework and its Application as a Dopamine Delivery System," Journal of Controlled Release, Vol. 175, pp. 10-16. https://doi.org/10.1016/j.jconrel.2013.12.002
- Taboas, J. M., Maddox, R. D., Krebsbach, P. H. and Hollister, S. J., "Indirect Solid Free Form Fabrication of Local and Global Porous, Biomimetic and Composite 3D Polymer-ceramic Scaffolds," Biomaterials, Vol. 24, No. 1, pp. 181-194.
- Mantila, R. S. M., Kemppainen, J. M., Moffitt, E. N., Krebsbach, P. H. and Hollister, S. J., 2008, "The Pore Size of Polycaprolactone Scaffolds has Limited Influence on Bone Regeneration in an in Vivo Model," Journal of Biomedical Materials Research Part A, Vol. 92A, No. 1, pp. 359-368.
- Lee, K.-W., Wang, S., Lu L., Jabbari, E., Currier, B. L. and Yaszemski, M. J., 2006, "Fabrication and Characterization of Poly(Propylene Fumarate) Scaffolds with Controlled Pore Structures Using 3-Dimensional Printing and Injection Molding," Tissue Engineering, Vol. 12, No. 10, pp. 2801-2811. https://doi.org/10.1089/ten.2006.12.2801
- Lee, M., Dunn, J. C. Y. and Wu, B. M., 2005, "Scaffold Fabrication by Indirect Three-dimensional Printing," Biomaterials, Vol. 26, No. 20, pp. 4281-4289. https://doi.org/10.1016/j.biomaterials.2004.10.040
- Liu, C. Z., Xia, Z. D., Han, Z. W., Hulley, P. A., Triffitt, J. T. and Czernuszka, J. T., 2008, "Novel 3D Collagen Scaffolds Fabricated by Indirect Printing Technique for Tissue Engineering," Journal of Biomedical Materials Research Part B, Vol. 85, No. 2, pp. 519-528.
- Yeong, W.-Y., Chua, C.-K., Leong, K.-F., Chandrasekaran, M. and Lee, M.-W., 2006, "Comparison of Drying Methods in the Fabrication of Collagen Scaffold Via Indirect Rapid Prototyping," Journal of Biomedical Materials Research Part B, Vol. 82, No. 1, pp. 260-266.
- Kang, H.-W. and Cho, D.-W., 2012, "Development of an Indirect Stereolithography Technology for Scaffold Fabrication with a Wide Range of Biomaterial Selectivity," Tissue Engineering Part C, Vol. 18, No. 9, pp. 719-729. https://doi.org/10.1089/ten.tec.2011.0621
- Park, J. H., Jung J. W., Kang, H.-W. and Cho, D.-W., 2014, "Indirect Three-dimensional (3D) Printing of Synthetic Polymer Scaffold Based on Thermal Molding Process," Biofabrication, Accepted for publication.
- Park, J. H., Jung, J. W., Kang, H. W., Joo, Y. H., Lee, J. S. and Cho, D. W., 2012, "Development of a 3D Bellows Tracheal Graft: Mechanical Behavior Analysis, Fabrication and an in Vivo Feasibility Study," Biofabrication, Vol. 4, No. 3, 035004. https://doi.org/10.1088/1758-5082/4/3/035004
- Shim, J.-H., Lee, J. S., Kim, J. Y. and Cho, D.-W., 2012, "Bioprinting of a Mechanically Enhanced Three- Dimensional Dual Cell-laden Construct for Osteochondral Tissue Engineering using a Multi-head Tissue/Organ Building System," Journal of Micromechanics and Microengineering, Vol. 22, No. 8, pp. 085014. https://doi.org/10.1088/0960-1317/22/8/085014
- Nakamura, M., Kobayashi, A., Takagi, F., Watanabe, A., Hiruma, Y., Ohuchi, K., Iwasaki, Y., Horie, M., Morita, I. and Takatani, S., 2005, "Biocompatible Inkjet Printing Technique for Designed Seeding of Individual Living Cells," Tissue Engineering, Vol. 11, No. 11-12, pp. 1658-1666. https://doi.org/10.1089/ten.2005.11.1658
- Arai, K., Iwanaga, S., Toda, H., Genci, C., Nishiyama, Y. and Nakamura, M., 2011, "Three-dimensional Inkjet Biofabrication based on Designed Images," Biofabrication, Vol. 3, No. 3, pp. 034113. https://doi.org/10.1088/1758-5082/3/3/034113
- Nakamura, M., Iwanaga, S., Henmi, C., Arai, K. and Nishiyama, Y., 2010, "Biomatrices and Biomaterials for Future Developments of Bioprinting and Biofabrication," Biofabrication, Vol. 2, No. 1, pp. 014110. https://doi.org/10.1088/1758-5082/2/1/014110
- Cui, X., Dean, D., Ruggeri, Z. M. and Boland, T., 2010, "Cell Damage Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary Cells," Biotechnology and Bioengineering, Vol. 106, No. 6, pp. 963-969. https://doi.org/10.1002/bit.22762
- Derby, B., 2012, "Printing and Prototyping of Tissues and Scaffolds," Science, Vol. 338, No. 6109, pp. 921-926. https://doi.org/10.1126/science.1226340
- Ferris, C. J., Gilmore, K. G. and Wallace, G. G., 2013, "Biofabrication: An Overview of the Approaches used for Printing of Living Cells," Applied Microbiology and Biotechnology, Vol. 97, No. 10, pp. 4243-4258. https://doi.org/10.1007/s00253-013-4853-6
- Rungseevijitprapa, W. and Bodmeier, R., 2009, "Injectability of Biodegradable in Situ Forming Microparticle Systems (ISM)," European Journal of Pharmaceutical Sciences, Vol. 36, No. 4, pp. 524-531. https://doi.org/10.1016/j.ejps.2008.12.003
- Rezende, R. A., Bartolo, P. J., and Mendes, A., 2009, "Rheological Behavior of Alginate Solutions for Biomanufacturing," Journal of Applied Polymer Science, Vol. 113, No. 6, pp. 3866-3871. https://doi.org/10.1002/app.30170
- Nair, K., Gandhi, M., Khalil, S., Yan, K. C., Marcolongo, M., Barbee, K. and Sun, W., 2009, "Characterization of Cell Viability during Bioprinting Processes," Biotechnology Journal, Vol. 4, pp. 1168-1177. https://doi.org/10.1002/biot.200900004
- Lee, S.-H., Jo, A.R., Choi, G.P., Woo, C.H., Lee, S.J., Kim, B.-S., You, H.-K. and Cho, Y.-S., 2013, "Fabrication of 3D Alginate Scaffold with Interconnected Pores Using Wire-Network Molding Technique," Tissue Engineering and Regenerative Medicine, Vol. 10, pp. 53-59. https://doi.org/10.1007/s13770-013-0366-8
- Shim, J.-H., Kim, J. Y., Park, M., Park, J. and Cho, D.-W., 2011, "Development of a Hybrid Scaffold with Synthetic Biomaterials and Hydrogel using Solid Freeform Fabrication Technology," Biofabrication, Vol. 3, No. 3, pp. 034102. https://doi.org/10.1088/1758-5082/3/3/034102
- Thomas, J. D., Fussell, G., Sarkar, S., Lowman, A. M. and Marcolongo, M., 2010, "Synthesis and Recovery Characteristics of Branched and Grafted PNIPAAm- PEG hydrogels for the Development of an Injectable Load-bearing Nucleus Pulposus Replacement," Acta Biomaterialia, Vol. 6, No. 4, pp. 1319-1328. https://doi.org/10.1016/j.actbio.2009.10.024
- Duan, B., Kapetanovic, E., Hockaday, L. A. and Butcher, J. T., 2013, "Three-dimensional Printed Trileaflet Valve Conduits Using Biological Hydrogels and Human Valve Interstitial Cells," Acta Biomaterialia, Accepted for publication.
- Kundu, J., Shim, J.-H., Jang, J., Kim, S.-W. and Cho, D.-W., 2013, "An Additive Manufacturing‐based PCL- Alginate-Chondrocyte Bioprinted Scaffold for Cartilage Tissue Engineering," Journal of Tissue Engineering and Regenerative Medicine, Online Published.
- Campos, D. F. D., Blaeser, A., Weber, M., Jäkel, J., Neuss, S., Jahnen-Dechent, W. and Fischer, H., 2013, "Three-dimensional Printing of Stem Cell-laden Hydrogels Submerged in a Hydrophobic High-density Fluid," Biofabrication, Vol. 5, No. 1, pp. 015003. https://doi.org/10.1088/1758-5082/5/1/015003
- Wang, X., Yan, Y., Pan, Y., Xiong, Z., Liu, H., Cheng, J., Liu, F. and Lu, Q., 2006, "Generation of Threedimensional Hepatocyte/Gelatin Structures with Rapid Prototyping System," Tissue Engineering, Vol. 12, No. 1, pp. 83-90. https://doi.org/10.1089/ten.2006.12.83
- Fedorovich, N. E., De Wijn, J. R., Verbout, A. J., Alblas, J. and Dhert, W. J., 2008, "Three-dimensional Fiber Deposition of Cell-laden, Viable, Patterned Constructs for Bone Tissue Printing," Tissue Engineering Part A, Vol. 14, No. 1, pp. 127-133.
- Maher, P. S., Keatch, R. P., Donnelly, K., Mackay, R. E. and Paxton, J. Z., 2009, "Construction of 3D Biological Matrices using Rapid Prototyping Technology," Rapid Prototyping Journal, Vol. 15, No. 3, pp. 204-210. https://doi.org/10.1108/13552540910960307
- Duan, B., Hockaday, L. A., Kang, K. H. and Butcher, J. T., 2013, "3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels," Journal of Biomedical Materials Research Part A, Vol. 101, No. 5, pp. 1255-1264.
- Li, S., Xiong, Z., Wang, X., Yan, Y., Liu, H. and Zhang, R., 2009, "Direct Fabrication of a Hybrid Cell/Hydrogel Construct by a Double-nozzle Assembling Technology," Journal of Bioactive and Compatible Polymers, Vol. 24, No. 3, pp. 249-265. https://doi.org/10.1177/0883911509104094
- Pescosolido, L., Schuurman, W., Malda, J., Matricardi, P., Alhaique, F., Coviello, T., van Weeren, P. R., Dhert, J., Hennink, W. E. and Vermonden, T., 2011, "Hyaluronic Acid and Dextran-based Semi-IPN Hydrogels as Biomaterials for Bioprinting," Biomacromolecules, Vol. 12, No. 5, pp. 1831-1838. https://doi.org/10.1021/bm200178w
- Pati, F., Jang, J., Ha, D.-H., Kim, S. W., Rhie, J.-W., Shim, J.-H., Kim, D.-H. and Cho, D.-W., 2014, "Printing Three-dimensional Tissue Analogues with Decellularized Extracellular Matrix Bioink," Nature Communications, Vol. 5, No. 3935.
- Kang, K. H., Hockaday, L. A. and Butcher, J. T., 2013, "Quantitative Optimization of Solid Freeform Deposition of Aqueous Hydrogels," Biofabrication, Vol. 5, No. 3, pp. 035001. https://doi.org/10.1088/1758-5082/5/3/035001
- Fedorovich, N. E., De Wijn, J. R., Verbout, A. J., Alblas, J. and Dhert, W. J., 2008, "Three-dimensional Fiber Deposition of Cell-laden, Viable, Patterned Constructs for Bone Tissue Printing," Tissue Engineering Part A, Vol. 14, No. 1, pp. 127-133.
- Wüst, S., Godla, M. E., Müller, R. and Hofmann, S., 2014, "Tunable Hydrogel Composite with Two-step Processing in Combination with Innovative Hardware Upgrade for Cell-based Three-dimensional Bioprinting," Acta Biomaterialia, Vol. 10, No. 2, pp. 630-640. https://doi.org/10.1016/j.actbio.2013.10.016
- Loozen, L. D., Wegman, F., Öner, F. C., Dhert, W. J. and Alblas, J., 2013, "Porous Bioprinted Constructs in BMP-2 Non-viral Gene Therapy for Bone Tissue Engineering," Journal of Materials Chemistry B, Vol. 1, No. 48, pp. 6619-6626. https://doi.org/10.1039/c3tb21093f
- Fedorovich, N. E., Schuurman, W., Wijnberg, H. M., Prins, H. J., Van Weeren, P. R., Malda, J., Alblas, J. and Dhert, W. J., 2011, "Biofabrication of Osteochondral Tissue Equivalents by Printing Topologically Defined, Cell-laden Hydrogel Scaffolds," Tissue Engineering Part C: Methods, Vol. 18, No. 1, pp. 33-44.
- Duan, B., Hockaday, L. A., Kang, K. H. and Butcher, J. T., 2013, "3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels," Journal of Biomedical Materials Research Part A, Vol. 101, No. 5, pp. 1255-1264.
- Shin, S. R., Bae, H., Cha, J. M., Mun, J. Y., Chen, Y. C., Tekin, H., Shin, H., Farshchi, S., Dokmeci, M. R., Tang, S. and Khademhosseini, A., 2011, "Carbon Nanotube reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation," ACS Nano, Vol. 6, No. 1, pp. 362-372.
- Jang, J., Oh, H., Lee, J., Song, T. H., Jeong, Y. H. and Cho, D.-W., 2013, "A Cell-laden Nanofiber/Hydrogel Composite Structure with Tough-soft Mechanical Property," Applied Physics Letters, Vol. 102, No. 21, pp. 211914. https://doi.org/10.1063/1.4808082
- Schuurman, W., Khristov, V., Pot, M. W., Rene van Weeren, P., Dhert, W. J. A. and Malda, J., 2011, "Bioprinting of Hybrid Tissue Constructs with Tailorable Mechanical Properties," Biofabrication, Vol. 3, No. 2, pp. 021001. https://doi.org/10.1088/1758-5082/3/2/021001
- Lee, J.-S., Hong, J. M., Jung, J. W., Shim, J.-H., Oh, J. H. and Cho, D.-W., 2014, "3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration," Biofabrication, Vol. 6, No. 2, pp. 024103. https://doi.org/10.1088/1758-5082/6/2/024103
- Gaetani, R., Doevendans, P. A., Metz, C. H. G., Alblas, J., Messina, E., Giacomello, A. and Sluijter, J. P. G., 2012, "Cardiac Tissue Engineering Using Tissue Printing Technology and Human Cardiac Progenitor Cells," Biomaterials, Vol. 33, No. 6, pp. 1782-1790. https://doi.org/10.1016/j.biomaterials.2011.11.003
Cited by
- Current advances in three-dimensional tissue/organ printing vol.13, pp.6, 2016, https://doi.org/10.1007/s13770-016-8111-8
- Three-Dimensional Printing of Tissue/Organ Analogues Containing Living Cells vol.45, pp.1, 2017, https://doi.org/10.1007/s10439-016-1611-9
- Correlation between UV-dose and Shrinkage amounts of Post-curing Process for Precise Fabrication of Dental Model using DLP 3D Printer vol.17, pp.2, 2018, https://doi.org/10.14775/ksmpe.2018.17.2.047