초록
In this study, the large-scale hydraulic model test was performed to investigate the hydraulic characteristics for development of the non-power soil cleaning and keeping system at the dike gate. The outlet height, outflow number, outflow discharge, and outflow cycle were compared and analyzed. The non-power soil cleaning and keeping system was most effective at 11.2 mm in the outlet height. And then the mean outflow cycle was 1.09 sec, and the mean outflow discharge was $0.00164m^3/s$. The total outflow number increased gradually as the water level of a water tank increased, and the outlet height decreased. As a level of water tank decreased, the mean outflow cycle was lengthened, and the unit outflow discharge increased. This result showed this system was most effective. To remove the silty clay deposited in facilities, the methods of excavation, dredging, high pressure washing, etc have been applied to the tidal facilities such as land reclamation, a small size fishing port, and a harbor for maintenance. However, this is extremely cost-ineffective, whereas the non-power soil cleaning and keeping system will bring about an enormously positive economic effect. In addition, when the non-power soil cleaning and keeping system is applied to the dike gate of land reclamation, a thorough examination of the local tidal data and the careful system planning are required to prevent the disaster damage caused by flooding.