DOI QR코드

DOI QR Code

Evaluation of the Applicability of Rice Growth Monitoring on Seosan and Pyongyang Region using RADARSAT-2 SAR -By Comparing RapidEye-

RADARSAT-2 SAR를 이용한 서산 및 평양 지역의 벼 생육 모니터링 적용성 평가 -RapidEye와의 비교를 통해-

  • Na, Sang Il (Climate Change and Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Hong, Suk Young (Climate Change and Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Yi Hyun (Climate Change and Agroecology Division, National Academy of Agricultural Science, RDA) ;
  • Lee, Kyoung Do (Climate Change and Agroecology Division, National Academy of Agricultural Science, RDA)
  • Received : 2014.07.25
  • Accepted : 2014.09.16
  • Published : 2014.09.30

Abstract

Radar remote sensing is appropriate for rice monitoring because the areas where this crop is cultivated are often cloudy and rainy. Especially, Synthetic Aperture Radar (SAR) can acquire remote sensing information with a high temporal resolution in tropical and subtropical regions due to its all-weather capability. This paper analyzes the relationships between backscattering coefficients of rice measured by RADARSAT-2 SAR and growth parameters during a rice growth period. And we applied the relationships to crop monitoring of paddy rice in North Korea. As a result, plant height and Leaf Area Index (LAI) increased until Day Of Year (DOY) 234 and then decreased, while fresh weight and dry weight increased until DOY 253. Correlation coefficients revealed that Horizontal transmit and Horizontal receive polarization (HH)-polarization backscattering coefficients were correlated highly with plant height (r=0.95), fresh weight (r=0.92), vegetation water content (r=0.91), LAI (r=0.90), and dry weight (r=0.89). Based on the observed relationships between backscattering coefficients and variables of cultivation, prediction equations were developed using the HH-polarization backscattering coefficients. Concerning the evaluation for the applicability of the LAI distribution from RADARSAT-2, the LAI statistic was evaluated in comparison with LAI distribution from RapidEye image. And LAI distributions in Pyongyang were presented to show spatial variability for unaccessible areas.

Keywords

References

  1. Baret, F. and G. Guyot, 1991. Potentials and limits of vegetation indices for LAI and aFAR assessment, Remote Sensing of Environment, 35: 161-173. https://doi.org/10.1016/0034-4257(91)90009-U
  2. Bouvet, A. and T. Le Toan, 2011. Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta, Remote Sensing of Environment, 115(4): 1090-1101. https://doi.org/10.1016/j.rse.2010.12.014
  3. Chen, J., H. Lin, and Z. Pei, 2007. Application of ENVISAT ASAR data in mapping rice crop growth in Southern China, IEEE Geoscience Remote Sensing Letter, 4: 431-435. https://doi.org/10.1109/LGRS.2007.896996
  4. Curran, P.J., J. Dungan, and H.L. Gholz, 1992. Seasonal LAI measurements in slash pine using Landsat TM, Remote Sensing of Environment, 39: 3-13. https://doi.org/10.1016/0034-4257(92)90136-8
  5. Gao, B.C. and A.F.H. Goetz, 1995. Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data, Remote Sensing of Environment, 52: 155-162. https://doi.org/10.1016/0034-4257(95)00039-4
  6. Hong, S.Y., S.H. Hong, and S.K. Rim, 2000. Relationship between Radarsat backscattering coefficient and rice growth, Korean Journal of Remote Sensing, 16(2): 109-116 (in Korean).
  7. Hong, S.Y., K.A. Sudduth, N.R. Kitchen, C.W. Fraisse, H.L. Palm, and W.J. Wiebold, 2004. Comparison of remote sensing and crop growth models for estimating within-field LAI variability, Korean Journal of Remote Sensing, 20(3): 175-188. https://doi.org/10.7780/kjrs.2004.20.3.175
  8. Hong, S.Y., B.K. Min, J.M. Lee, Y.H. Kim, and K.D. Lee, 2012. Estimation of paddy field area in north Korea using RapidEye images, Korean Journal of Soil Science and Fertilizer, 45(6): 1194-1202 (in Korean). https://doi.org/10.7745/KJSSF.2012.45.6.1194
  9. Huete, A., C. Justice, and H. Liu, 1994. Development of vegetation and soil indices for MODISEOS, Remote Sensing of Environment, 49: 224-234. https://doi.org/10.1016/0034-4257(94)90018-3
  10. Jackson, T.J. and T.J. Schmugge, 1991. Vegetation effects on the passive microwave emission of soils, Remote Sensing of Environment, 36: 203-212. https://doi.org/10.1016/0034-4257(91)90057-D
  11. Jang, M.W., Y.H. Kim, N.W. Park, and S.Y. Hong, 2012. Mapping paddy rice varieties using multi-temporal RADARSAT SAR images, Korean Journal of Remote Sensing, 28(6): 653-660 (in Korean). https://doi.org/10.7780/kjrs.2012.28.6.5
  12. Korea Aerospace Research Institute Homepage. http://www.kari.re.kr/. Accessed 2 Jul. 2014.
  13. Kim, S.H., S.Y. Hong, K.A. Sudduth, Y.H. Kim, and K.D. Lee, 2012. Comparing LAI estimates of corn and soybean from vegetation indices of multi-resolution satellite images, Korean Journal of Remote Sensing, 28(6): 597-609 (in Korean). https://doi.org/10.7780/kjrs.2012.28.6.1
  14. Kim, Y.H., S.Y. Hong, and H.Y. Lee, 2009. Estimation of paddy rice growth parameters using L, C, X-bands polarimetric scatterometer, Korean Journal of Remote Sensing, 25(1): 31-44 (in Korean). https://doi.org/10.7780/kjrs.2009.25.1.31
  15. Kim, Y.H., S.Y. Hong, K.D. Lee and S.Y. Jang. 2013a. Estimation of rice growth using RADARSAT-2 SAR images at Seosan region. Korean Journal of Soil Science and Fertilizer, 46(4): 237-244 (in Korean ). https://doi.org/10.7745/KJSSF.2013.46.4.237
  16. Kim Y.H., H.Y. Lee, and S.Y. Hong, 2013b. Continuous monitoring of rice growth with a stable ground-based scatterometer system, IEEE Geoscience and Remote Sensing Letters, 10(4): 831-835. https://doi.org/10.1109/LGRS.2012.2225595
  17. Kim Y.H., T. Jackson., R. Bindlish., S.Y. Hong., G.H. Jung, and K.D. Lee, 2014. Retrieval of wheat growth parameters with radar vegetation indices, IEEE Geoscience and Remote Sensing Letters, 11(4): 831-835.
  18. Kurosu, T., M. Fujita, and K. Chiba, 1995. Monitoring of rice crop growth from space using the ERS-1 C-band SAR, IEEE Transactions on Geoscience and Remote Sensing, 33(4): 1092-1096. https://doi.org/10.1109/36.406698
  19. Kwon, H.J., S.C. Shin, and S.J. Kim, 2004. Estimation of Monthly Actual Evapotranspiration Using NOAA-AVHRR Satellite Images, Korean Society of Agricultural Engineers, 46(1): 15-24 (in Korean ). https://doi.org/10.5389/KSAE.2004.46.1.015
  20. Lee, K.S., S.H. Kim, J.H. Park, T.G. Kim, Y.I. Park, and C.S. Woo, 2006. Estimation of forest LAI in close canopy situation using optical remote sensing data, Korean Journal of Remote Sensing, 22(5): 305-311. https://doi.org/10.7780/kjrs.2006.22.5.305
  21. Le Toan, T., F. Ribbes, L.F. Wang, N. Floury, K.H. Ding, J.A. Kong, M. Fujita, and T. Kurosu, 1997. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results, IEEE Transactions on Geoscience and Remote Sensing, 35: 41-56. https://doi.org/10.1109/36.551933
  22. Na, S.I and J.H. Park, 2008. Regional Scale Evapotranspiration Mapping using Landsat 7 ETM+ Land Surface Temperature and NDVI Space. Korean Society of Agricultural Engineers, 50(3): 115-123 (in Korean). https://doi.org/10.5389/KSAE.2008.50.3.115
  23. Na, S.I., S.Y. Hong, Y.H. Kim, K.D. Lee and S.Y. Jang, 2013. Estimating leaf area index of paddy rice from RapidEye imagery to assess evapotranspiration in Korean paddy fields. Korean Journal of Soil Science and Fertilizer, 46(4): 245-252. https://doi.org/10.7745/KJSSF.2013.46.4.245
  24. Peddle, D.R., F.R. Hall, and E.F. LeDrew, 1999. Spectral mixture analysis and geometricoptical reflectance modeling of boreal forest biophysical structure, Remote Sensing of Environment, 67: 288-297. https://doi.org/10.1016/S0034-4257(98)00090-X
  25. Peterson, D.L., and S.W. Running, 1989. Application in Forest Science and Management, Theory and Applications of Optical Remote Sensing, Doghouses Asrar, New York; John Wiley and Sons, 4210-473.
  26. Potithep, S., N.K. Nasahara, H. Muraoka, S. Nagai, R. Suzuki, 2010. What is the actual relationship between LAI and VI in a deciduous broadleaf forest?, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 11152(8): 609-614.
  27. Shin, H.J., R. Ha, M.J. Park, and S.J. Kim, 2010. Estimation of Spatial Evapotranspiration using the Relationship between MODIS NDVI and Morton ET -For Chungjudam Watershed-. Korean Society of Agricultural Engineers, 52(1): 19-24 (in Korean). https://doi.org/10.5389/KSAE.2010.52.1.019
  28. Yilmaz, M.T., E.R. Hunt, L.D. Goins, S.L. Ustin, V.C. Vandrbilt, and T.J. Jackson. 2008. Vegetation water content during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery, Remote Sensing of Environment, 112: 350-362. https://doi.org/10.1016/j.rse.2007.03.029