DOI QR코드

DOI QR Code

Simulation of the Best Management Practice Impacts on Nonpoint Source Pollutant Reduction in Agricultural Area using STEPL WEB Model

STEPL WEB 모형을 이용한 농촌지역 비점오염원저감 대책 모의

  • Park, Youn Shik (Regional Infrastructure Engineering, Kangwon National University) ;
  • Kum, Dong Hyuk (Regional Infrastructure Engineering, Kangwon National University) ;
  • Jung, Young Hun (Regional Infrastructure Engineering, Kangwon National University) ;
  • Cho, Ja Pil (APEC Climate Center) ;
  • Lim, Kyoung Jae (Regional Infrastructure Engineering, Kangwon National University) ;
  • Kim, Ki Sung (Regional Infrastructure Engineering, Kangwon National University)
  • Received : 2014.06.26
  • Accepted : 2014.08.20
  • Published : 2014.09.30

Abstract

Sediment-laden water is problematic in aquatic ecosystem and for hydraulic structures in a watershed, and agriculture area in a watershed is one of source areas of nonpoint source (NPS), since soil surface typically exposures due to agricultural activities. Especially, severe sediment might flow into stream when agricultural area is located near stream like the Imha-dam watershed. Soil erosion is affected by precipitation, therefore there is a need to consider precipitation characteristics in soil erosion and best management practices (BMPs) simulation. The Web-based Spreadsheet Tool for the Estimation of Pollutant Load (STEPL WEB) allows estimating long-term sediment loads and the impact of best management practices to reduce sediment loads. STEPL WEB and predicted precipitation data by MIROC-ESM model was used to estimate sediment loads and its reduction by filter strip and conversion of agricultural area to forest in the future 30 years. The result indicates that approximately 70 % of agricultural area requires filter strip installation or that approximately 50 % of agricultural area needs to be converted to forest, for 41 % of sediment load reduction.

Keywords

References

  1. Arnold, J. G. and R. Srinivasan, 1994. Integration of a BASINcale water quality model with GIS. Journal of the American Water Resources Association 30: 453-462. https://doi.org/10.1111/j.1752-1688.1994.tb03304.x
  2. Ashkar, F. and S. Mahdi, 2006. Fitting the log-logistic distribution be generalized moments. Journal of Hydrology 328: 694-703. https://doi.org/10.1016/j.jhydrol.2006.01.014
  3. Brovkin, V., L. Boysen, V. K. Arora, J. P. Boisier, P. Cadule, L. Chini, M. Claussen, P. Frienlingstein, V. Gayler, B. J. J. M. Van Den Hurk, G. C. Hurtt, C. D. Jones, E. Kato, N. De Nobletucoudre, F. Pacifico, J. Pongratz, and M. Weiss, 2013. Effect of anthropogenic land-use and land-cover changes on climate and land carbon storages in CMIP5 projections for the twenty-first century. American Meteorological Society 26: 6859-6881.
  4. El-Hassanin, A. S., T. M. Labib, and E. I. Gaber, 1993. Effect of vegetation cover and land slope on runoff and soil losses from the watersheds of Burundi. Agriculture, Ecosystems & Environment 43: 301-308. https://doi.org/10.1016/0167-8809(93)90093-5
  5. Flanagan, D. C. and M. A. Nearing, 1995. USDA-Water Erosion Prediction Project: Hillslope profile and watershed model documentation. NSERL Report No. 10. USDA-ARS National Soil Erosion Research Lab, West Lafayette, IN, p. 298.
  6. Holland, J. H., 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI.
  7. IPCC (Intergovern-mental Panel on Climate Change). 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Summary for Policymakers, Cambridge University Press, p. 104.
  8. Jang, W. S., Y. S. Park, J. Kim, N. Kim, J. Choi, Y. S. Ok, J. E. Yang, and K. J. Lim, 2010a. Development of the SWAT DWDM for accurate estimation of soil erosion from an agricultural field. Journal of the Korean Society of Agricultural Engineers 50(1): 79-88 (in Korean). https://doi.org/10.5389/KSAE.2010.52.1.079
  9. Jang, W. S., Y. S. Park, J. Choi, J. Kim, M. Shin, J. C. Ryu, H. Kang, and K. J. Lim, 2010b. Analysis of soil erosion reduction effect of rice straw mat by the SWAT model. Journal of the Korean Society of Agricultural Engineers 50(3): 97-104 (in Korean). https://doi.org/10.5389/KSAE.2010.52.3.097
  10. Jeon, J. H., 2010. Simulation of sediment yield from Imha watershed using HSPF. Journal of the Korean Society of Agricultural Engineers 52(6): 39-48 (in Korean). https://doi.org/10.5389/KSAE.2010.52.6.039
  11. Kum, D., J. Choi, I. J. Kim, D. S. Kong, J. Ryu, H. Kang, and K. J. Lim, 2011. Development of automatic extraction model of soil erosion management area using ArcGIS model builder. Journal of the Korean Society of Agricultural Engineers 53(1): 71-81 (in Korean). https://doi.org/10.5389/KSAE.2011.53.1.071
  12. Lee, J. M., Y. Jung, Y. S. Park, H. Kang, K. J. Lim, and H. Kim, 2014. Assessment of future climate change impact on groundwater recharge, baseflow and sediment in steep sloping watershed. Korean Wetlands Society 16(2): 173-185 (in Korean).
  13. Lim, K. J., M. Sagong, B. A. Engel, Z. Tang, J. Choi, and K. S. Kim, 2005. GIS-based sediment assessment tool. CATENA 64: 61-80. https://doi.org/10.1016/j.catena.2005.06.013
  14. Morgan, R. P. C., J. N. Quinton, R. E. Smith, G. Govers, J. W. A. Poesen, K. Auerswald, G. Chisci, D. Torri, and M. E. Styczen, 1998. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms 23: 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  15. Nicks, A. D., L. and J. Lane, 1989. USDA-Water erosion prediction project: Hillslope profile model document; USDARS National Soil Erosion Research Laboratory: West Lafayette, IN.
  16. Park, Y. S. and B. A. Engel, 2014. A web-based model to estimate the impact of best management practices. Water 6: 455-471. https://doi.org/10.3390/w6030455
  17. Park, Y. S., J. Kim, J. Park, J. H. Jeon, D. H. Choi. T. Kim, J. Choi, J. Ahn, K. S. Kim, and K. J. Lim, 2007. Evaluation of SWAT applicability to simulation of sediment behaviors at the Imha-Dam watershed. Journal of Korean Society on Water Quality 23(4): 467-473 (in Korean).
  18. Park, Y. S., J. Kim, S. Heo, N. Kim, J. Ahn, J. Park, K. S. Kim, and K. J. Lim, 2008. Comparison of soil loss estimation using SWAT and SATEEC. Journal of the Korean Society of Agricultural Engineers 50(1): 3-12 (in Korean). https://doi.org/10.5389/KSAE.2008.50.1.003
  19. Tetra Tech, Inc., 2011. User's guide spreadsheet tool for the estimation of pollutant load (STEPL) version 4.1. Fairfax, VA, USA.
  20. Togan, V. and A. T. Daloglu, 2008. An improved genetic algorithm with initial popluation strategy and self-adaptive member grouping. Computers and Structures 86: 1204-1218. https://doi.org/10.1016/j.compstruc.2007.11.006
  21. Watanabe, S., T. Hajima, K. Sudo, T. Nagashima, T. Takemura, H. Okajima, T. Nozawa, H. Kawase, M. Abe, T. Yokohata, T. Ise, H. Sato, E. Kato, K. Takata, S. Emori, and M. Kawamiya. 2011. MICRO-ESM: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development Discussions 4: 1063-1128. https://doi.org/10.5194/gmdd-4-1063-2011
  22. Wischmeier, W. H. and D. D. Smith, 1978. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning. The USDA Agricultural Handbook No. 537. US Department of Agriculture, General Publishing Office, Washington, DC. p. 85.
  23. Yi, H. S., J. Kim, and S. U. Lee, 2008. Development of turbid water prediction model for the Imha dam watershed using HSPF. Journal of Korean Society of Environmental Engineers, 760-767 (in Korean).