
 

J Inf Process Syst, Vol.10, No.3, pp.471~482, September 2014  
http://dx.doi.org/10.3745/JIPS.04.0003 

 

 

471 

Efficient Greedy Algorithms for Influence 
Maximization in Social Networks  

 
Jiaguo Lv*,**, Jingfeng Guo*, and Huixiao Ren* 

 
 

Abstract—Influence maximization is an important problem of finding a small subset of 
nodes in a social network, such that by targeting this set, one will maximize the 
expected spread of influence in the network. To improve the efficiency of algorithm 
KK_Greedy proposed by Kempe et al., we propose two improved algorithms, 
Lv_NewGreedy and Lv_CELF. By combining all of advantages of these two algorithms, 
we propose a mixed algorithm Lv_MixedGreedy. We conducted experiments on two 
synthetically datasets and show that our improved algorithms have a matching 
influence with their benchmark algorithms, while being faster than them. 

 
Keywords—Greedy Algorithm, Influence Maximization, Social Network 

 
 

1. INTRODUCTION 

Influence maximization is the problem of finding a small subset of nodes (seed nodes) in a 
social network so that their aggregated influence in the network is maximized. Due to the wide 
application wide application of influence maximization in viral marketing, it has been one of the 
most important research topics in social networks. Influence maximization was first studied as 
an algorithmic problem in [1,2]. Kempe et al. [3] formulate the problem as a discrete 
optimization problem. They show that the problem is NP-hard, and present a greedy algorithm 
(KK_Greedy), which achieves an approximation ratio of 1−1/e. However, the KK_Greedy 
algorithm relies on the computation of the influence spread given a seed set, and on the use of 
Monte Carlo simulations on an influence cascade to estimate the influence spread, which makes 
the algorithm rather slow. To address this problem, a lot of work has been done to improve the 
efficiency of the algorithm. For the time constrained influence maximization problem, Liu et al. 
[4] proposed some influence spreading path based methods. 

In this paper, we first analyze the inefficient sources of KK_Greedy, and then we propose 
three improved greedy algorithms, Lv_NewGreedy, Lv_CELF, and Lv_MixedGreedy. Our 
experiments on two synthetic datasets show that our algorithms outperform their original 
algorithms. 

The remainder of the paper is organized as follows: Section 2 provides an overview of other 

※ This work was supported financially by the Natural Science Foundation (60673136), Natural Science 
Foundation of Hebei Province (F2012209019), the Scientific Research Project of Universities of Hebei 
Province (QN201483) and the Science and Technology Infrastructure Platform Construction Project of Hebei 
Province (14960112D). 

Manuscript received May 23, 2013; first revision August 7, 2013; accepted September 26, 2013; onlinefirst 
August 25, 2014.  

Corresponding Author: Jingfeng Guo (jfguo@ysu.edu.cn) 
* School of Information Science and Engineering, Yanshan University, Qinhuangdao, China (lvjiaguo2004@163.com, 

jfguo@ysu.edu.cn, 76542929@qq.com) 
** School of Information Science and Engineering, Zaozhuang University, Zaozhuang, China (lvjiaguo2004@163.com) 

Copyright ⓒ 2014 KIPS

ISSN 1976-913X (Print) 
ISSN 2092-805X (Electronic)



 
Efficient Greedy Algorithms for Influence Maximization in Social Networks 

 

472 

related work. Section 3 details KK_Greedy and three improved algorithms for influence 
maximization. We provide a performance evaluation in Section 4. Finally, we present our 
conclusions in Section 5. 

 
2. RELATED WORK 

In this section, we first provide details about the KK_Greedy algorithm, and then present the 
recent works to improve the efficiency of KK_Greedy.  

Table 1 lists the notations used in this paper. In this paper, a social network is a directed graph 
G=(V,E). Vertices in V are the nodes in the network and edges in E denote the relationship 
between a pair of nodes. The KK_Greedy algorithm is described in Algorithm 1. This algorithm 
builds the initial seed set one node at a time. It always greedily chooses the node with the largest 
marginal gain in influence. 

 
Table 1. Notations 

Terms Description 

S Seed node set (in Algorithm 1, Algorithm 2, Algorithm 3, Algorithm 4) 

K The size of seed node set (in Algorithm 1, Algorithm 2, Algorithm 3, Algorithm 4) 

getInfluenceSet(G,S) A function which returns the influenced node set of S in G (in Algorithm 1) 

σG(S) The size of the influenced set of the seed set S in G (in Section 3.1) 

FGi(S) The reachable set from S in Gi  (in Section 3.1) 

MG(G,S,v) |getInfluenceSet(G,S+{v})- getInfluenceSet (G,S)| (in Algorithm 2, Algorithm 4) 

Gi=(Vi, Ei) 
The graph that we get by running a random live edge selection process on G in iteration i (in 
Algorithm 2, Algorithm 4) 

S
iG （ S

iV ， S
iE ） 

The induced graph from Gi ,where S
iV =Vi- FGi(S), S

iE ={(u,v)|u,v S
iV ,(u,v) Ei } (in 

Algorithm 2, Algorithm 4) 

SCCi 
The macro node that denotes the ith strong connected component in the induced graph S

iG  

(in Algorithm 2, Algorithm 4) 

sccCount The number of strong connected components (in Algorithm 2, Algorithm 4) 

u.mg1 
The property of node u to denote the marginal gain of u for the current iteration (in Algo-
rithm 2, Algorithm 4) 

u.mg 
The property of node u to denote the expected marginal gain of u for all iterations (in Algo-
rithm 2, Algorithm 4) 

Q<u,u.mg,mgset,u.flag> 

A table for all candidate nodes. In Q, u.mgset is the marginal influenced set of node u for the 
current s, that is, u.mgset = getInfluenceSet (g,S+{u})-getInfluenceSet(g,S), u.mg=|u.mgset|, 
and u.flag is the number of iteration when u.mg was last updated. (in Algorithm 3, Algo-
rithm 4) 

 
Algorithm 1 KK_Greedy (G,K) 
1. S=φ;  
2. While |S|<K do 

3. u=  
\

argm ax (| getInfluenceSet ( , S v ) getInfluenceSet ( , S) |)
v V S

G G


     

4. S=S∪{u} 
5. End While  
6. Return S 



 
Jiaguo Lv, Jingfeng Guo, and Huixiao Ren 

 

473 

In KK_Greedy, getInfluenceSet(G,S) is used to get the influenced node set by S in G. The 
major limitation of KK_Greedy is its inefficiency. The inefficiency is two-fold: 

1) The computation of function getInfluenceSet(G,S) is computationally expensive with the 
Monte Carlo simulation. 

2) There are too many candidate nodes that need to be examined by computing their marginal 
gain of influence. 

In recent years, considerable work has been done to improve the efficiency of KK_Greedy. 
To address the first problem, a lot of excellent algorithms have been proposed, such as pattern-
induced multi-sequence alignment (PMIA) in [5], NewGreedy in [6], LDAG in [7], and SPIN in 
[8]. To tackle the second problem, in [9] and CELF++ in [10] have been proposed. In addition, 
based on the community structure of social networks, many algorithms have been proposed, 
such as CGA in [11] and CGINA in [12]. 

 
 

3. IMPROVED ALGORITHMS FOR THE KK_GREEDY ALGORITHM 

In this section, we try to improve the efficiency of KK_Greedy, as it has inefficient sources. 
 

3.1 Improving the Efficiency of the Influence Function 

The efficiency of evaluating the influence spread by the Monte Carlo simulation is very low. 
On the basis of the equivalent live edge selection process with the independent cascade model 
defined in [3], a new efficient method to evaluate the influence spread is proposed, which is 
similar to the method of NewGreedy in [6]. First, we selected a large enough integer R as the 
simulation times. Then, in iteration i, we ran the random live edge selection process on the 
original directed graph G, and get the graph Gi. Suppose, FGi(S) is the reachable set from S in Gi,
σG(S) is the size of the influenced set of the seed set S, then, we have: 

 

σG(S) =(1/R)*
1

| ( ) |
i

R

G
i

F S

                          (1) 

 
For the current seed set S in each iteration, from all the nodes in V–S, we greedily choose the 

node v with the maximal value of |getInfluenceSet(G,S+{v})- getInfluenceSet(G,S)|, and added 
it to S. For simplicity, MG(G,S,v) denotes the expression |getInfluenceSet(G,S+{v})- 
getInfluenceSet (G,S)|, and FG (S) is the reachable set from node set S in graph G. 

For every graph Gi=(Vi,Ei) obtained from the random live edge process, with the concept of 
strongly connected component in graph theory, we could further reduce the computational 
complexity of MG(Gi,S,v). From the graph theory, we know that for a strong connected 
component SCCi in graph G and any two nodes u and v (u,vSCCi and u≠v), FG({u}) = 
FG({v}). So, the steps for computing MG(Gi,S,v) are as follows: 

1) First, we computed the reachable set FGi(S) for the current S. Then, for v in S∪FGi(S), 
MG(Gi, S,v)=0. 

2) Let S
iV =Vi – FGi(S), S

iE ={(u,v)|u,v  S
iV ,(u,v) Ei}, then we could get the induced 

graph S
iG （ S

iV ，
S
iE ）from Gi. 

3) Get all of the strongly connected components from S
iG . Since all nodes in a strong 



 
Efficient Greedy Algorithms for Influence Maximization in Social Networks 

 

474 

connected component have the same reachable set, we used a macro node to denote a 
strongly connected component. Now, the macro node SCCi and SCCj denote the strongly 
connected components of SCCi and SCCj, respectively. If there is an edge in S

iG  from the 

nodes in the strongly connected components of SCCi to SCCj, we then added an edge from 
macro node SCCi to SCCj. Thus, we were able to get a macrograph S

iSCC  from the 

induced graph S
iG . 

4) Compute the reachable set for every node in S
iG . Suppose, ( )S

i
iSCC

F SCC  is the reachable 

set of macro node SCCi (vSCCi) in macrograph S
iSCC . Then for v in S

iV , we have, 

 

MG(Gi,S,v)=  iSCC
F SCC

| |
S
i

scc

scc

                         (2) 

 
Discussion. From the empirical results of social networks, we know that there are a lot of 

certain-scale strongly connected components in the graph. But, if this is not the case, the above 
method will be inefficient, and we will directly compute all reachable sets for every node as 
NewGreedy in [6]. So, in our algorithm, we introduced threshold θ, when the number of strongly 
connected components sccCount was less than θ*|

S
iV |, we computed MG(Gi,S,v) with the 

method detailed in Eq. (2), otherwise, we computed MG(Gi,S,v) directly with the method in 
NewGreedy. So, we have: 

 

MG(Gi,S,v)= 






























|V|*sccCount  if      |})({|

      |V|*sccCount and  Gin   vif       || 

 |V|*sccCount and (S)F Sin   vif       0

S
i

S
i

S
i

)(SCCFscc

S
iG

iS
iSCC

i







vF

scc

S
iG

    (3) 

 
To obtain all of the strongly connected components from the graph, we adopted the Tarjan 

algorithm in [13], which has the complexity O(m+n). Our algorithm Lv_NewGreedy is 
described in Algorithm 2. 

 
Algorithm2 Lv_NewGreedy(G,K) 

1. S=φ;Q=φ; 
2. For v in V do 
3. v.mg1=0 
4. v.mg=0 
5. Add v to Q 
6. End For 
7. While |S|<K do: 
8. For i=1 to R do: 
9. Gi(Vi,Ei)=GetLiveGraph(G) 

10. Compute FGi(S) 

11. Compute S
iG ( S

iV , S
iE ) 



 
Jiaguo Lv, Jingfeng Guo, and Huixiao Ren 

 

475 

12. Get all SCC from Gi with Tarjan algorithm to SCCList 

13. If | SCCList |<| S
iV |*θ then 

14. S
iSCC =GetSccGraph(Gi,SCCList) 

15. For scc in SCCList do 
16. Compute ( )S

iSCC
F scc  

17. End For 
18. End If 
19. For v in FGi(S) do: 
20. v.mg1=0 
21. v.mg=v.mg+v.mg1 
22. End For 

23. If | SCCList |<| S
iV |*θ then 

24. For scc in SCCList do 
25. mg=|scc.nodes| 

26. For ascc in ( . )S
iSCC

F v scc  do 

27. mg=mg+|ascc.nodes| 
28. End For 
29. For v in scc.nodes do 
30. v.mg1=mg 
31. v.mg=v.mg+v.mg1 
32. End For 
33. End For 
34. Else 

35. For v in S
iV  do 

38. v.mg1=| ({ })S
iG

F v  | 

37. v.mg=v.mg+v.mg1 
38. End For 
39. End If 
40. End For //*R 
41. For v in Q do 
42. v.mg=v.mg/R 
43. End For 

44. u=
\

argmax( . )
v V S

v mc


 

45. S=S+{u} 
46. End While 
47. Return S 
 
Example. We consider the graph Gi shown in Fig. 1(a), where Vi={1,2,3,4,5,6,7,8,9,10,11}. 

Suppose, the current set is S={1}. In line 10, we can get FGi(S)={1,2,3,4}; in line 11, we can get 
the induced graph S

iG  shown in Fig. 1(b). In line 12, we can get strongly connected 
components, SCC1={5,6,7}，SCC2={8,9,10}，SCC3={11}, which are shown in Fig. 2. 
Suppose threshold θ is 0.5, so, in lines 13-18, we can get the macrograph S

iSCC , which is 



 
Efficient Greedy Algorithms for Influence Maximization in Social Networks 

 

476 

shown in Fig. 3. And, we will get the reachable set of SCC1, SCC2, and SCC3, that is 
{SCC1,SCC2,SCC3}, {SCC2,SCC3}, and {SCC3}. In lines 19-22, we can get MG(Gi,S,v) for 
all nodes in FGi(S), that is, 1.mg1=2.mg1=3.mg1=4.mg1=0. In lines 23-39, we can get 
MG(Gi,S,v) for all nodes in Vi, that is, 5.mg1=6.mg1=7.mg1=|SCC1|+|SCC2|+|SCC3|=3+ 
1+3=7, 8.mg1=9.mg1=10.mg1=|SCC2|+|SCC3|=4, 11.mg1=|SCC3|=1. In Algorithm 2, u.mg1 
is used to store the marginal gain of u for the current iteration, and u.mg is used to get the 
expected marginal gain of u for all iterations. 

 
3.2 Reducing the Number of Candidate Nodes that Need to be Examined 

From KK_Greedy, we know that when we choose a new seed, any node in V-S would be 
examined as a candidate node. Clearly, this will greatly reduce the efficiency of the algorithm. With 
the submodularity of influence function, cost effective lazy forward (CELF) is proposed in [9]. In my 
opinion, when a new seed u is selected, any node v in the marginal influenced set of u should not be 
as a candidate node. Since v can be influenced by seed set S+{u}, all nodes that can be influenced by 
v can be influenced by S+{u} too. Based on this, we propose our improved algorithm Lv_CELF for 
CELF. In Lv_CELF, we maintain a table Q<u,u.mg,mgset,u.flag> for all candidate nodes. In Q, 
u.mgset= getInfluenceSet (g,S+{u})-getInfluenceSet(g,S), u.mg=|u.mgset|, and u.flag is the number 
of iterations when u.mg was last updated. In our algorithm, when a new seed u is selected, any node 
in u.mgset will be removed from Q. Algorithm Lv_CELF is described in Algorithm 3. 

 

      
(a)                                  (b)  

 
Fig. 1. An example of (a) graph Gi and (b) its induced graph S

iG (S={1}). 

 

11
               

 
Fig. 2. All of the strongly connected components in S

iG .      Fig. 3. Macrograph S
iSCC . 

 
Algorithm3 Lv_CELF (G,K) 

1. S=φ; Q=φ; 
2. For each v in V do 
3. u.mgset=getInfluenceSet(G,{v}) 
4. u.mg=|u.mgset| 



 
Jiaguo Lv, Jingfeng Guo, and Huixiao Ren 

 

477 

5. u.flag=0  
6. add u to Q by u.mg in descending order 
7. End For 
8. While |S|<k and |Q|>0 do 
9. u=Q[top] 

10. if u.flag==|S| then 
11. S=S+{u} 
12. Q=Q-u.mgset 
13. Else 
14. u.mgset=getInfluenceSet(G,S+{v})- getInfluenceSet (G,S) 
15. u.mg=|u.mgset| 
16. u.flag=|S| 
17. Resort Q by u.mg in descending order 
18. End If 
19. End While 
20. Return S 
 

3.3 A Mixed Algorithm for Influence Maximization 

To improve the efficiency of the influence function, we are proposing the efficient algorithm 
Lv_NewGreedy. To reduce the number of calling influence functions, we are proposing the 
improved algorithm Lv_CELF. Based on the idea of MixedGreedy in [5], we are proposing an 
efficient algorithm Lv_MixedGreedy. In the first iteration, we used the method in 
Lv_NewGreedy to get u.mg for all u in V, then, we used the method in Lv_CELF to reduce the 
times of the calling influence function. Algorithm Lv_MixedGreedy is described in Algorithm 4. 

 
Algorithm4 Lv_MixedGreedy(G,K) 
/* initialize */ 

1. S=φ;Q= φ; 
2. For u in V do 
3. u.mg1=0; u.mg=0; u.mgset={};u.flag=0; 
4. Add u to Q    
5. End For 

/* get u.mg for all u in V */ 
6. For i=1 to R do: 
7. Gi(Vi,Ei)=GetLiveGraph(G) 
8. Compute S

iG ( S
iV , S

iE ) 

9. Get all SCC from Gi with Tarjan algorithm to SCCList 
10. If | SCCList |<|Vi|*θ then 
11. SccGraphi=GetSccGraph(Gi,SCCList) 
12. For scc in SCCList do 
13. Compute ( )S

iSCC
F scc  

14. End For 
15. End If 
16. If | SCCList |<|Vi|*θthen 



 
Efficient Greedy Algorithms for Influence Maximization in Social Networks 

 

478 

17. For scc in SCCList do 
18. mg=|scc.nodes| 
19. For ascc in ( )

iSCCF scc  do 

20. mg=mg+|ascc.nodes| 
21. End For 
22. For v in scc.nodes do 
23. v.mg1=mg 
24. v.mg=v.mg+v.mg1 
25. End For 
26. End For 
27. Else 
28. For v in Vi do 
29. v.mg1=| ({ })S

iG
F v  | 

30. v.mg=v.mg+v.mg1 
31. End For 
32. End If 
33. End For //*R 
34. For v in Q do 
35. v.mg=v.mg/R 
36. End For 
37. Resort Q by v.mg in descending order 
38. While |S|<k and |Q|>0 do 
39. u=Q[top] 
40. if u.flag==|S| then 
41. S=S+{u} 
42. If |u.mgset|=0 then 
43. u.mgset= getInfluenceSet (G,S+{u})- getInfluenceSet (G,S) 
44. end if 
45. Q=Q-u.mgset 
46. Else 
47. u.mgset= getInfluenceSet (G,S+{v})- getInfluenceSet (G,S) 
48. u.mg=|u.mgset| 
49. u.flag=|S| 
50. Resort Q by u.mg in descending order 
51. End if 
52. End While 
53. Return S 
 
 

4. EXPERIMENTS 

To evaluate the efficiency and performance of Lv_NewGreedy, Lv_CELF, and Lv_MixedGreedy, 
we implemented them and other benchmark algorithms, such as NewGreedy, CELF, 
MixedGreedy, and PMIA, and conducted them on two synthetic networks. We were interested 
in comparing both the influence spread and the running time of these algorithms.  



 
Jiaguo Lv, Jingfeng Guo, and Huixiao Ren 

 

479 

4.1 Dataset 

By the benchmarks developed by Lancichinetti et al. [14], we obtained our experimental 
datasets. They are directed graphs. Basic statistics about these networks are given in Table 2. For 
the weight of every edge, we first assigned it a random value in [0,1]. Then, we normalized it by  

Wij=Wij/ ij
i

W . For the algorithms Lv_NewGreedy and Lv_MixedGreedy, the parameter θ is  

0.5. For the threshold parameter of the baseline algorithm PMIA, we ran the algorithm numerous 
times with many threshold values. In our experiments, we found that PMIA achieves its 
matching influence spread with other algorithms when the threshold values are set to 1/320 and 
1/80 for Data 1 and Data 2. In our experiments, the number of simulations R is 1,000. The 
experiments were run on a desktop computer with I5 2400S and 4 G memory. 

 
Table 2. Statics of the datasets 

ID Dataset Node Edge Avg. degree Number of SCCs 

1 Data 1 14,780 40,159 4.8745 498 

2 Data 2 7,200 86,968 39.7940 8 

 

4.2 Experimental Results 

4.2.1 Influence spread of our algorithms on two datasets 
To evaluate the performance of our algorithms, we ran the algorithms NewGreedy, 

Lv_NewGreedy, CELF, Lv_CELF_Greedy, MixedGreedy, Lv_MixedGreedy, and PMIA on 
Data 1 and Data 2. In the experiment, we varied the size of the seed set k from 10 to 50. The 
influence spread of these algorithms on Data 1 and Data 2 is shown in Fig. 4. 

As for the influence spread, we can see from Fig. 4 that the influence spreads of these 
algorithms are very close. 

 

  
 (a)                                      (b)  

 
Fig. 4. Influence spread vs. k on Data 1 (a) and Data 2 (b).  

 
4.2.2 Running time of our algorithms on two datasets 
The running times of these algorithms on Data 1 and Data 2 are shown in Fig. 5. From Fig. 5, 

we can see that algorithm Lv_CELF is faster than CELF; algorithm Lv_NewGreedy is faster 
than NewGreedy; and that algorithm Lv_MixedGreedy is faster than MixedGreedy. These 
results are consistent with what we expected. For the baseline algorithm PMIA in Data 1, we can 
see from Fig. 5 that it has the matching running time with algorithm Lv_MixedGreedy in Data 1. 

0

100

200

300

400

500

600

700

800

k=10 k=20 k=30 k=40 k=50

In
f
lu

en
c
e 
sp
r
ea

d

Size of seed set

CELF

Lv_CELF

NewGreedy

Lv_NewGreedy

MixedGreedy

Lv_MixedGreedy

PMIA(1/320)

0

200

400

600

800

1000

1200

k=10 k=20 k=30 k=40 k=50

I
nf
l
ue
n
ce
 s
p
e
ed

see of size

CELF

Lv_CELF

NewGreedy

Lv_NewGreedy

MixedGreedy

Lv_MixedGreedy

PMIA(1/80)



 
Efficient Greedy Algorithms for Influence Maximization in Social Networks 

 

480 

However, it runs more slowly than algorithm Lv_MixedGreedy in Data 2. From Section 3.1, we 
can see that when the number of the strongly connected components is small and the scale of the 
strongly connected component is large, algorithms Lv_NewGreedy and Lv_MixedGreedy have 
greater superiority than other algorithms in terms of efficiency. From Table 2, we can see that 
the number of the strongly connected components is only 8. So, in Data 2, algorithm 
Lv_MixedGreedy clearly outperforms PMIA in terms of efficiency. Moreover, we can see that 
the number of strongly connected components in the network has a strong influence on the 
comparison of Lv_NewGreedy and NewGreedy. In summation, in our experiments 
Lv_MixedGreedy combines all if the advantages of Lv_CELF and Lv_NewGreedy, and has the 
highest efficiency out of all of the algorithms for influence maximization.  

 

  
(a)                                   (b)  

Fig. 5. Running time vs. k on Data 1 (a) and Data 2 (b). 
 
 

5. CONCLUSION 

To improve the efficiency of KK_Greedy for influence maximization, we gave two reasons 
for the inefficient problem. To tackle the inefficient problem in the influence function, we have 
proposed the improved algorithm Lv_NewGreedy. In this algorithm, with the strongly 
connected component in graph theory, we greatly improved the efficiency of the influence 
function. To reduce the number of calling influence functions with the elimination of redundant 
candidate nodes, we have proposed the improved algorithm of Lv_CELF. Based on the idea of 
MixedGreedy, and by combining the advantages of Lv_NewGreedy and Lv_CELF, we have 
proposed a new algorithm called Lv_MixedGreedy. By having run experiments on two 
synthetically datasets, we showed that our improved algorithms have a matching influence with 
their benchmark algorithms, while being faster than them. 

 
 

REFERENCES 

[1] P. Domingos and M. Richardson, "Mining the network value of customers," in Proceedings of the 7th 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 
CA, August 26-29, 2001, pp. 57-66. 

[2]  M. Richardson and P. Domingos, "Mining knowledge-sharing sites for viral marketing," in 
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, Edmonton, Canada, July 23-25, 2002, pp. 61-70. 

[3]  D. Kempe, J. Kleinberg, and É. Tardos, "Maximizing the spread of influence through a social 
network," in Proceedings of the 9th ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, Washington, DC, August 24-27, 2003, pp. 137-146. 

0

5000

10000

15000

20000

25000

k=10 k=20 k=30 k=40 k=50

R
un
ni
ng

 t
im
e(

se
co
n
d)

Size of seed set

CELF

Lv_CELF

NewGreedy

Lv_NewGreedy

MixedGreedy

Lv_MixedGreedy

PMIA(1/320)

0

2000

4000

6000

8000

10000

12000

14000

k=10 k=20 k=30 k=40 k=50

Ru
nn
in

g 
ti
me
(s

ec
on
d)

Size if seed set

CELF

Lv_CELF

NewGreedy

Lv_NewGreedy

MixedGreedy

Lv_MixedGreedy

PMIA(1/80)



 
Jiaguo Lv, Jingfeng Guo, and Huixiao Ren 

 

481 

[4]  B. Liu, G. Cong, D. Xu, and Y. Zeng, "Time constrained influence maximization in social networks," 
in Proceedings of the IEEE 12th International Conference on Data Mining, Brussels, Belgium, 
December 10-13, 2012, pp. 439-448. 

[5]  W. Chen, C. Wang, and Y. Wang, "Scalable influence maximization for prevalent viral marketing in 
large-scale social networks," in Proceedings of the 16th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, Washington, DC, July 25-28, 2010, pp. 1029-1038. 

[6]  W. Chen, Y. Wang, and S. Yang, "Efficient influence maximization in social networks," in 
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, Paris, France, June 28-July 1, 2009, pp. 199-208. 

[7]  W. Chen, Y. Yuan, and L. Zhang, "Scalable influence maximization in social networks under the 
linear threshold model," in Proceedings of the IEEE 10th International Conference on Data Mining, 
Sydney, Australia, December 13-17, 2010, pp. 88-97. 

[8]  R. Narayanam and Y. Narahari, "A shapley value-based approach to discover influential nodes in 
social networks," IEEE Transactions on Automation Science and Engineering, vol. 8, no. 1, pp. 130-
147, Jan. 2011. 

[9]  J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance, "Cost-effective 
outbreak detection in networks," in Proceedings of the 13th ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, San Jose, CA, August 12-15, 2007, pp. 420-429. 

[10]  A. Goyal, W. Lu, and L. V. S. Lakshmanan, "CELF++: optimizing the greedy algorithm for influence 
maximization in social networks," in Proceedings of the 20th international conference companion on 
World wide web, Hyderabad, India, March 28-April 1, 2011, pp. 47-48. 

[11]  Y. Wang, G. Cong, G. Song, and K. Xie, "Community-based greedy algorithm for mining top-K 
influential nodes in mobile social networks," in Proceedings of the 16th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, Washington, DC, July 25-28, 2010, pp. 1039-
1048. 

[12]  J. Lv, J. Guo, and H. Ren, "A new community-based algorithm for influence maximization in social 
network," Journal of Computational Information Systems, vol. 9, no. 14, pp. 5659-5666, Jan. 2013. 

[13]  R. Tarjan, "Depth-first search and linear graph algorithms," SIAM Journal on Computing, vol. 1, no. 
2, pp. 146-160, 1972. 

[14]  A. Lancichinetti, S. Fortunato, and F. Radicchi, "Benchmark graphs for testing community detection 
algorithms," Physical Review E, vol. 78, no. 4, 046110, Oct. 2008. 

 
 

Jiaguo Lv  

He received Master degree in computer science, in 2005, from the Yanshan 

University, China. Now, he is a student in Doctor course. His current research 

interests include social networks, data mining. 

 

 

 

 

 
Jingfeng Guo  

He is currently Professor at the Yanshan University, China. His current research 

interests include database theory and its application, data mining, social network, 

image processing, etc. 

 

 



 
Efficient Greedy Algorithms for Influence Maximization in Social Networks 

 

482 

Huixiao Ren  

She is currently a student in Master degree course in Yanshan University. Her 

current research interest is social network. 

 

 
 
 

 
 

 


