DOI QR코드

DOI QR Code

경사하중에 따른 시멘트 유지형 임플란트 지지골의 유한요소법 응력 분포

Finite Element Analysis of Stress Distribution on Supporting Bone of Cement Retained Implant by Oblique Loading

  • 이명곤 (부산가톨릭대학교 치기공학과)
  • 투고 : 2014.05.19
  • 심사 : 2014.06.24
  • 발행 : 2014.09.28

초록

본 연구는 치과 임상에서 사용하고 있는 시멘트 유지형 치과용 임플란트의 지지골 응력 분포 안정성을 확인하고자 시행하였다. 모델링과 유한요소 응력 분석은 유한요소 해석 프로그램인 Solidworks를 사용하였고, 시멘트 유지형 임플란트 시스템인 지대주와 고정체를 연결하는 지대주 나사를 20 Ncm 나사조임력에 의한 결합조건을 적용시킨 단관 모델을 제작하고, 설측에서 협측으로의 $45^{\circ}$ 경사로 100 N 크기 외부하중을 가하여 지지골 응력 분포 해석을 실시하였다. 경사하중에 따른 임플란트 고정체의 지지골 응력 크기와 분포를 파악하기 위한 유한요소법 분석을 통해 다음 결과를 얻었다. 고정체 직경, 길이의 조건에 관계없이 임플란트 고정체 상부와 골 접촉부인 치밀골에 응력이 집중되는 양상으로 나타났고, 고정체 길이 증가로 인한 응력 감소 폭보다 직경 증가로 인한 감소폭이 큰 것으로 나타났다 따라서 본 연구 결과는 지지골 형태 조건에 대하여 가능한 큰 직경의 고정체 사용이 효과적이라고 판단된다.

The dental osseointegration implant should be enough to endure occlusion load and it's required to have efficient design and use of implant to disperse the stress into bones properly. Solidworks as a finite element analysis program for modeling and analysis of stress distribution was used for the research. The simple crown model was designed on applying conjoined condition with tightening torque of 20 Ncm of a abutment screw between a cement retained implant abutment and a fixture. A $45^{\circ}$ oblique loading from lingual to buccal side on buccal cusps of crown and performed finite element analysis by 100 N of external load. The results by a analysis for stress distribution of supporting bones of fixture were as below. The von Mises stress was concentrated on the upper side of supporting compact bone regardless of the diameters and lengths of fixture, and the efficiency result of stress reduction was increase of fixture's diameter than it's length. Therefore, it's effective to use wider fixture as possible to the conditions of supporting jaw bone.

키워드

참고문헌

  1. M. K. Lee, "3D Dimensional finite element analysis of contact stress of gold screws in implant patrial denture," Journal of Korea Academy of Dental Technology, Vol.35, No.4, pp.303-312, 2013. https://doi.org/10.14347/kadt.2013.35.4.303
  2. D. Di Iorio, B. Sinjari, B. Feragalli, and G. Murmura, "Biomechanical aspects in late implant failures: scanning electron microscopy analysis of four clinical cases," J Contemp Dent Pract, Vol.12, No.5, pp.356-360, 2011.
  3. 이미옥, "부산지역 치과환자의 임플란트 유형 및 분포 경향", 한국콘텐츠학회논문지, 제10권, 제8호, pp.275-281, 2010. https://doi.org/10.5392/JKCA.2010.10.8.274
  4. 김수관, "치과임플란트 대상환자의 치료결정에 영향을 미치는 요인", 한국콘텐츠학회논문지, 제11권, 제11호, pp.265-273, 2011. https://doi.org/10.5392/JKCA.2011.11.11.264
  5. B. E. Pjeturesson, R. E. Jung, R. Glauser, A. Zembiv, M. Zwahlen, and N. P. Lang, "A systematic review of the 5-year survival and complication rates of implant-supported single crowns," Clin Oral Implants Res, Vol.19, No.2, pp.119-130, 2008. https://doi.org/10.1111/j.1600-0501.2007.01453.x
  6. Misch, Carl E, Dental implant prosthetics, Elsevier Health Sciences Pub 2004.
  7. S. S. Wallace and S. J. Froum, "Effect of maxillary sinus augmentation on the survival of endosseous dental implants," A systematic review Ann Periodontol, Vol.8, No.1, pp.328-343, 2003. https://doi.org/10.1902/annals.2003.8.1.328
  8. S. E. Eckert, S. J. Meraw, A. L. Weaver, and C. M. Lohse, "Early experience with Wide-platform Mk II implants. Part I: Implant survival. Part II: Evaluation of risk factors involving implant survival," Int J Oral & Maxillofac Implants, Vol.16, No.2, pp.208-216, 2001.
  9. R. S. Boggan, J. T. Strong, M. E. Misch, and M. W. Bidez, "Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants," J Prosthetic Dent, Vol.82, No.4, pp.436-440, 1999. https://doi.org/10.1016/S0022-3913(99)70030-2
  10. C. E. Misch, "Implant design considerations for the posterior regions of the mouth," Implant Dent, Vol.8, No.4, pp.376-386, 1999. https://doi.org/10.1097/00008505-199904000-00008
  11. M. Davarpanah, H. Martinez, M. Kebir, D. Etienne, and J. F. Tecucianu, "Wide-diameter implants: new concepts," Int J Periodontics Restorative Dent, Vol.21, No.2, pp.149-159, 2001.
  12. J. P. Geng, K. B. Tan, and G. R. Liu, "Application of finite element analysis in implant dentistry: a review of the literature," J Prosthetic Dent, Vol.85, No.6, pp.585-598, 2001. https://doi.org/10.1067/mpr.2001.115251
  13. S. S. Son and M. K. Lee, "Finite element alnalysis on supporting bone by tripodal placement of implant fixture," Journal of Korea Academy of Dental Technology, Vol.31, No.1, pp.7-15, 2009.
  14. P. Vigolo, Z. Majzoub, and G. Cordioli, "Evaluation of the accuracy of three techniques used for multiple implant abutment impressions," J Prosthet Dent, Vol.89, No.2, pp.186-192, 2003. https://doi.org/10.1067/mpr.2003.15
  15. N. H. Creugers, C. M. Kreulen, P. A. Snoek, B. Rangert, and R. J. De Kanter, "A systematic review of single-tooth restorations supported by implants," J Dent, Vol.28, No.4, pp.209-217, 2000. https://doi.org/10.1016/S0736-5748(99)00078-7
  16. K. Akca and H. Iplikcioglu "Finite element stress analysis of the effect of short implant usage in place of cantilever extensions in mandibular posterior edentulism," J Oral Rehabili, Vol.29, No.4, pp.350-356, 2002. https://doi.org/10.1046/j.1365-2842.2002.00872.x
  17. M. K. Lee, "A 3-dimensional finite element analysis of stress distribution supporting bone by diameters of dental implant fixture," Journal of Korea Academy of Dental Technology, Vol.26, No.1, pp.69-76, 2004.
  18. J. Duyck, H. J. Ronold, H. Van Oosterwyck, I. Naert, J. Vander Sloten, and J. E. Ellingsen, "The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study," Clin Oral Implants Res, Vol.12, No.3, pp.207-218, 2001. https://doi.org/10.1034/j.1600-0501.2001.012003207.x