참고문헌
- H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasi-bility problems, SIAM Rev. 38 (1996), no. 3, 367-426. https://doi.org/10.1137/S0036144593251710
- H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces, Math. Oper. Res. 26 (2001), no. 2, 248-264. https://doi.org/10.1287/moor.26.2.248.10558
- H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
- C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems 18 (2002), no. 2, 441-453. https://doi.org/10.1088/0266-5611/18/2/310
- Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms 8 (1994), no. 2-4, 221-239. https://doi.org/10.1007/BF02142692
- Y. Censor, T. Elfving, N. Kopf, and T. Bortfeld, The multiple-sets split feasibility prob-lem and its applications for inverse problems, Inverse Problems 21 (2005), no. 6, 2071-2084. https://doi.org/10.1088/0266-5611/21/6/017
- Y. Censor, A. Motova, and A. Segal, Perturbed projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl. 327 (2007), no. 2, 1244-1256. https://doi.org/10.1016/j.jmaa.2006.05.010
- Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Convex Anal. 16 (2009), no. 2, 587-600.
- A. Moudafi, The split common fixed point problem for demicontractive mappings, Inverse Problems 26 (2010), no. 5, 055007, 6 pp.
- A. Moudafi, A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal. 74 (2011), no. 12, 4083-4087. https://doi.org/10.1016/j.na.2011.03.041
- B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Problems 21 (2005), no. 5, 1655-1665. https://doi.org/10.1088/0266-5611/21/5/009
- Y. C. Tang, J. G. Peng, and L. W. Liu, A cyclic algorithm for the split common fixed point problem of demicontractive mappings in Hilbert spaces, Math. Modell. Anal. 17 (2012), no. 4, 457-466. https://doi.org/10.3846/13926292.2012.706236
- F. Wang and H. K. Xu, Approximating curve and strong convergence of the CQ Algo-rithm for the split feasibility problem, J. Inequal. Appl. 2010 (2010), Article ID 102085, 13 pages.
- F. Wang and H. K. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal. 74 (2011), no. 12, 4105-4111. https://doi.org/10.1016/j.na.2011.03.044
- Z. W. Wang, Q. Z. Yang, and Y. N. Yang, The relaxed inexact projection methods for the split feasibility problem, Appl. Math. Comput. 217 (2011), no. 12, 5347-359. https://doi.org/10.1016/j.amc.2010.11.058
- H. K. Xu, A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems 22 (2006), no. 6, 2021-2034. https://doi.org/10.1088/0266-5611/22/6/007
- H. K. Xu, Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces, Inverse Problems 26 (2010), no. 10, 105018, 17 pp.
- Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems 20 (2004), no. 4, 1261-1266. https://doi.org/10.1088/0266-5611/20/4/014
- Q. Yang and J. Zhao, Generalized KM theorems and their applications, Inverse Problems 22 (2006), no. 3, 833-844. https://doi.org/10.1088/0266-5611/22/3/006
- H. Y. Zhang and Y. J. Wang, A new CQ method for solving split feasibility problem, Front. Math. China 5 (2010), no. 1, 37-46. https://doi.org/10.1007/s11464-009-0047-z
- J. Zhao and Q. Yang, Several solution methods for the split feasibility problem, Inverse Problems 21 (2005), no. 5, 1791-1799. https://doi.org/10.1088/0266-5611/21/5/017
피인용 문헌
- The split common fixed point problem for multivalued demicontractive mappings and its applications pp.1579-1505, 2018, https://doi.org/10.1007/s13398-018-0496-x