References
- A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory of Second Order Dynamic Systems, John Wiley and Sons, New York, Toronto, 1973.
- W. J. Beyn, The effect of discretization on homoclinic orbits, Bifurcation, Analysis, Algorithms, Applications, Birkhauser, Basel, 1-8, 1987.
- W. J. Beyn, On invariant closed curves for one-step methods, Numer. Math. 51 (1987), no. 1, 103-122. https://doi.org/10.1007/BF01399697
- W. J. Beyn and B. M. Garay, Estimates of variable stepsize Runge-Kutta methods for sectorial evolution equations with nonsmooth data, Appl. Numer. Math. 41 (2002), no. 3, 369-400. https://doi.org/10.1016/S0168-9274(01)00126-X
- W. J. Beyn and J. M. Kleinhauf, The numerical computation of homoclinic orbits for maps, SIAM J. Numer. Anal. 34 (1997), no. 3, 1207-1236. https://doi.org/10.1137/S0036142995281693
- W. J. Beyn and M. Stiefenhofer, A direct approach to homoclinic orbits in the fast dynamics of singularly perturbed systems, J. Dynam. Differential Equations 11 (1999), no. 4, 671-709. https://doi.org/10.1023/A:1022663512855
- N. Chen, J. Sun, Y. Sun, and M. Tang, Visualizing the complex dynamics of families of polynomials with symmetric critical points, Chaos Solitons Fractals 42 (2009), no. 3, 1611-1622. https://doi.org/10.1016/j.chaos.2009.03.042
- E. J. Doedel, M. J. Friedman, and B. I. Kunin, Successive continuation for locating connecting orbits, Numer. Algorithms 14 (1997), no. 1-3, 103-124. https://doi.org/10.1023/A:1019152611342
- E. J. Doedel, M. J. Friedman, and A. C. Monteiro, On locating connecting orbits, Appl. Math. Comput. 65 (1994), no. 1-3, 231-239. https://doi.org/10.1016/0096-3003(94)90179-1
- B. Fiedler and J. Sheurle, Discretization of homoclinic orbits, rapid forcing and "invis-ible" chaos, Mem. Amer. Math. Soc. 119 (1996), no. 570, viii+79 pp.
- S. J. Greenfield and R. D. Nussbaum, Dynamics of a quadratic map in two complex variables, J. Differential Equations 169 (2001), no. 1, 57-141. https://doi.org/10.1006/jdeq.2000.3895
- S. Lefschetz, Differential Equations: Geometric Theory, Interscience publishers, 1957.
- N. Mehidi and N. Mohdeb, Homoclinic solutions in a quadratic differential system under discretization, J. Difference Equ. Appl. 19 (2013), no. 4, 538-542. https://doi.org/10.1080/10236198.2012.658383
- Y. K. Zou and W. J. Beyn, On manifolds of connecting orbits in discretizations of dynamical systems, Nonlinear Anal. 52 (2003), no. 5, 1499-1520. https://doi.org/10.1016/S0362-546X(02)00269-9