DOI QR코드

DOI QR Code

HIERARCHICAL ERROR ESTIMATORS FOR LOWEST-ORDER MIXED FINITE ELEMENT METHODS

  • Received : 2014.07.30
  • Accepted : 2014.08.31
  • Published : 2014.09.30

Abstract

In this work we study two a posteriori error estimators of hierarchical type for lowest-order mixed finite element methods. One estimator is computed by solving a global defect problem based on the splitting of the lowest-order Brezzi-Douglas-Marini space, and the other estimator is locally computable by applying the standard localization to the first estimator. We establish the reliability and efficiency of both estimators by comparing them with the standard residual estimator. In addition, it is shown that the error estimator based on the global defect problem is asymptotically exact under suitable conditions.

Keywords

References

  1. M. Ainsworth, A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements, SIAM J. Sci. Comput. 30 (2007), 189-204.
  2. A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), 385-395. https://doi.org/10.1007/s002110050222
  3. D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications. Springer Series in Computational Mathematics, 44, Springer, Heidelberg, 2013.
  4. D. Braess and R. Verfurth, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), 2431-2444. https://doi.org/10.1137/S0036142994264079
  5. J. H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math. 68 (1994), 311-324. https://doi.org/10.1007/s002110050064
  6. C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), 465-476. https://doi.org/10.1090/S0025-5718-97-00837-5
  7. K.-Y. Kim, A posteriori error analysis for locally conservative mixed methods, Math. Comp. 76 (2007), 43-66. https://doi.org/10.1090/S0025-5718-06-01903-X
  8. K.-Y. Kim, Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems, Appl. Math. Comp. 218 (2012), 11820-11831. https://doi.org/10.1016/j.amc.2012.04.084
  9. K.-Y. Kim, Asymptotically exact error estimator based on equilibrated fluxes, Int. J. Numer. Anal. Model. (2014), submitted.
  10. M. G. Larson and A. Malqvist, A posteriori error estimates for mixed finite element approximations of elliptic problems, Numer. Math. 108 (2008), 487-500. https://doi.org/10.1007/s00211-007-0121-y
  11. C. Lovadina and R. Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp. 75 (2006), 1659-1674. https://doi.org/10.1090/S0025-5718-06-01872-2
  12. P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Proc. Conf. on Mathematical Aspects of Finite Element Methods, Lecture Notes in Math., Vol. 606, Springer-Verlag, Berlin, 1977, 292-315.
  13. M. Vohralik, A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal. 45 (2007), 1570-1599. https://doi.org/10.1137/060653184
  14. M. Vohralik, , Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods, Math. Comp. 79 (2010), 2001-2032. https://doi.org/10.1090/S0025-5718-2010-02375-0
  15. M. F. Wheeler and I. Yotov, A multipoint flux mixed finite element method, SIAM J. Numer. Anal. 44 (2006), 2082-2106. https://doi.org/10.1137/050638473
  16. B. I. Wohlmuth and R. H. W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp. 68 (1999), 1347-1378. https://doi.org/10.1090/S0025-5718-99-01125-4