References
-
N. Benouhiba, On the eigenvalues of weighted p(x)-Laplacian on
${\mathbb{R}}^N$ , Nonlinear Anal. 74 (2011), 235-243. https://doi.org/10.1016/j.na.2010.08.037 -
L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces
$L^{p({\cdot})}$ and$W^{k,p({\cdot})}$ , Math. Nachr. 268 (2004), 31-43. https://doi.org/10.1002/mana.200310157 -
X.L. Fan and D. Zhao, On the spaces
$L^{p(x)}({\Omega})$ and$W^{m,p(x)}({\Omega})$ , J. Math. Anal. Appl. 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617 - X.L. Fan and Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
- X.L. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), 306-317. https://doi.org/10.1016/j.jmaa.2003.11.020
- X.L. Fan, Eigenvalues of the p(x)-Laplacian Neumann problems, Nonlinear Anal. 67 (2007), 2982-2992. https://doi.org/10.1016/j.na.2006.09.052
-
H. Galewski, On the continuity of the Nemyskij operator between the spaces
$L^{p1(x)}$ and$L^{p2(x)}$ , Georgian Math. Journal. 13 (2006), 261-265. - Y.-H. Kim, L. Wang and C. Zhang, Global bifurcation for a class of degenerate elliptic equations with variable exponents, J. Math. Anal. Appl. 371 (2010), 624-637. https://doi.org/10.1016/j.jmaa.2010.05.058
- M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996.
- I. Sim and Y.-H. Kim, Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents, Discrete and Continuous Dynamical Systems, Supplement 2013, 695-707.
- A. Szulkin and M. Willem, Eigenvalue problem with indefinite weight, Studia Math. 135 (1995), 191-201.