DOI QR코드

DOI QR Code

EXISTENCE OF A POSITIVE INFIMUM EIGENVALUE FOR THE p(x)-LAPLACIAN NEUMANN PROBLEMS WITH WEIGHTED FUNCTIONS

  • Kim, Yun-Ho (Department of Mathematics Education Sangmyung University)
  • Received : 2014.05.01
  • Accepted : 2014.07.09
  • Published : 2014.09.30

Abstract

We study the following nonlinear problem $-div(w(x){\mid}{\nabla}u{\mid}^{p(x)-2}{\nabla}u)+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u)$ in ${\Omega}$ which is subject to Neumann boundary condition. Under suitable conditions on w and f, we give the existence of a positive infimum eigenvalue for the p(x)-Laplacian Neumann problem.

Keywords

References

  1. N. Benouhiba, On the eigenvalues of weighted p(x)-Laplacian on ${\mathbb{R}}^N$, Nonlinear Anal. 74 (2011), 235-243. https://doi.org/10.1016/j.na.2010.08.037
  2. L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p({\cdot})}$ and $W^{k,p({\cdot})}$, Math. Nachr. 268 (2004), 31-43. https://doi.org/10.1002/mana.200310157
  3. X.L. Fan and D. Zhao, On the spaces $L^{p(x)}({\Omega})$ and $W^{m,p(x)}({\Omega})$, J. Math. Anal. Appl. 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
  4. X.L. Fan and Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
  5. X.L. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), 306-317. https://doi.org/10.1016/j.jmaa.2003.11.020
  6. X.L. Fan, Eigenvalues of the p(x)-Laplacian Neumann problems, Nonlinear Anal. 67 (2007), 2982-2992. https://doi.org/10.1016/j.na.2006.09.052
  7. H. Galewski, On the continuity of the Nemyskij operator between the spaces $L^{p1(x)}$ and $L^{p2(x)}$, Georgian Math. Journal. 13 (2006), 261-265.
  8. Y.-H. Kim, L. Wang and C. Zhang, Global bifurcation for a class of degenerate elliptic equations with variable exponents, J. Math. Anal. Appl. 371 (2010), 624-637. https://doi.org/10.1016/j.jmaa.2010.05.058
  9. M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Heidelberg, 1996.
  10. I. Sim and Y.-H. Kim, Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents, Discrete and Continuous Dynamical Systems, Supplement 2013, 695-707.
  11. A. Szulkin and M. Willem, Eigenvalue problem with indefinite weight, Studia Math. 135 (1995), 191-201.