DOI QR코드

DOI QR Code

Evaluation of Biodegradation Characteristics of Haloacetic Acids by a Biofilm in a Drinking Water Distribution System

상수관망에서 생물막에 의한 Haloacetic Acids 생물분해 특성 평가

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 김도환 (부산광역시 상수도사업본부 수질연구소) ;
  • 한영립 (동아대학교 환경공학과) ;
  • 최영익 (동아대학교 환경공학과)
  • Received : 2014.06.19
  • Accepted : 2014.09.16
  • Published : 2014.09.30

Abstract

Haloacetic acids (HAAs) concentrations have been observed to decreased at drinking water distribution system extremities. This decrease is associated with microbiological degradation by pipe wall biofilm. The objective of this study was to evaluate HAAs degradation in a drinking water system in the presence of a biofilm and to identify the factors that influence this degradation. Degradation of monochloroacetic acid (MCAA), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) was observed in a simulated distribution system. The results obtained showed that different parameters came into play simultaneously in the degradation of HAAs, including retention time, water temperature, biomass, and composition of organic matter. Seasonal variations had a major effect on HAAs degradation and biomass quantity (ATP concentration) was lower by 25% in the winter compared with the summer.

Keywords

References

  1. Baribeau, H., Krasner, S. W., Chinn, R., Singer, P. C., 2005, Impact of biomass on the stability of HAAs and THMs in a simulated distribution system, J. Am. Water Works Assoc., 97(2), 69-81. https://doi.org/10.1002/j.1551-8833.2005.tb10826.x
  2. Belkhadir, F. R., Capdeville, B., Roques, H., 1988, Fundamental descriptive study and modelization of biological film growth, Water Res., 22(1), 59-69. https://doi.org/10.1016/0043-1354(88)90131-5
  3. Belkhadir, F. R., Capdeville, B., Roques, H., 1988, Fundamental descriptive study and modelization of biological film growth, Water Res., 22(1), 59-69. https://doi.org/10.1016/0043-1354(88)90131-5
  4. Chen, W. J., Weisel, C. P., 1998, Halogenated DBP concentrations in a distribution system, J. AWWA., 90(4), 151-163. https://doi.org/10.1002/j.1551-8833.1998.tb08418.x
  5. Delanoue, A., Holt, D. M., Anderson, H. A., McMath, S. M., Smith, S. E., Woodward, C. A., Fraser, A. R., Roe, M., 1999, Analysis of material (biofilm) present on the internal surfaces of a drinking water distribution system, In Biofilms in the Aquatic Environment, Edited by Keevil, C. W., Godfree, A., Holt, D., Dow, C., Royal Society of Chemistry, Cambridge, U.K.
  6. Hallam, N. B., West, J. R., Forster, C. F., Powell, J. C., Spencer, I., 2002, The decay of chlorine associated with the pipe wall in water distribution systems, Water Res., 36, 3479-3488. https://doi.org/10.1016/S0043-1354(02)00056-8
  7. Hozalski, R. M., Zhang, L., Arnold, W. A., 2001, Reduction of haloacetic acids by Fe0: implications for treatment and fate, Environ. Sci. Technol., 35(11), 2258-2263. https://doi.org/10.1021/es001785b
  8. Gallardo-Moreno, A. M., Gonzalez-Martin, M. L., Perez-Giraldo, C., Bruque, J. M., Gomez-Garcia, A. C., 2004, The measurement temperature: an important factor relating physicochemical and adhesive properties of yeast cells to biomaterials, J. Colloid Interface Sci., 271(2), 351-358. https://doi.org/10.1016/j.jcis.2003.12.008
  9. LeChevallier, M. W., Welch, N. J., Smith, D. B., 1996, Full-scale studies of factors related to coliform regrowth in drinking water, Appl. Environ. Microbiol., 62(7), 2201-2211.
  10. Lehtola, M. J., Miettinen, I. T., Keinanen, M. M., Kekki, T. K., Laine, O., Hirvonen, A., Vartiainen, T., Martikainen, P. J., 2004, Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes, Water Res., 38(17), 3769-3779. https://doi.org/10.1016/j.watres.2004.06.024
  11. Manuel, C. M., Nunes, O. C., Melo, L. F., 2007, Dynamics of drinking water biofilm in flow/non-flow conditions, Water Res., 41(3), 551-562. https://doi.org/10.1016/j.watres.2006.11.007
  12. Melo, L. F., Vieira, M. J., 1999, Physical stability and biological activity of biofilm under turbulent flow and low substrate concentration, Bioprocess Eng., 20, 363-368. https://doi.org/10.1007/s004490050604
  13. Niquette, P., Servais, P., Savoir, R., 2000, Impact of pipes material on densities of fixed bacterial biomass in a drinking water distribution system, Water Res., 34(6), 1952-1956. https://doi.org/10.1016/S0043-1354(99)00307-3
  14. Richardson, S. D., 2003, Disinfection by-products and other emerging contaminants in drinking water, Trends Anal. Chem., 22(10), 666-684 https://doi.org/10.1016/S0165-9936(03)01003-3
  15. Richardson, S. D., Simmons, J. E., Rice, G., 2002, Disinfection by-products: the next generation, Environ. Sci. Technol., 36(9), 198A-205A. https://doi.org/10.1021/es022308r
  16. Rodriguez, M. J., Sérodes, J. B., Levallois, P., 2004, Behavior of trihalomethanes and haloacetic acids in a drinking water distribution system, Water Res., 38(20), 4367-4382. https://doi.org/10.1016/j.watres.2004.08.018
  17. Serodes, J. B., Rodriguez, M. J., Li, H., Bouchard, C., 2003, Occurrence of trihalomethanes and haloacetic acids in chlorinated waters of the Quebec City area (Canada), Chemosphere, 51, 253-263. https://doi.org/10.1016/S0045-6535(02)00840-8
  18. Son, H. J., Roh, J. S., Bae, S. D., Choi, Y. I., Jung, C. W., 2007, Evaluation of the characteristics of THM formation by chlorination in extracted humic acid from Nakdong river water, J. Kor. Soc. Environ. Eng., 29(4), 412-418.
  19. Son, H. J., Yoo, P. J., 2009, The removal characteristics of THM formation potential according to the changes of bromide concentration of influent water in BAC process, J. Kor. Soc. Environ. Eng., 31(5), 378-381.
  20. Son, H. J., Yoo, S. J., Yoo, P. J., Jung, C. W., 2008, Effects of EBCT and water temperature on HAA removal using BAC process, J. Kor. Soc. Environ. Eng., 30(12), 1255-1261.
  21. Song, B., Leff, L. G., 2006, Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens, Microbiol. Res., 161, 355-361. https://doi.org/10.1016/j.micres.2006.01.004
  22. Tung, H., Xie, Y., 2009. Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems, Water Res., 43, 971-978. https://doi.org/10.1016/j.watres.2008.11.041
  23. Wang, W., Zhu, L., 2010, Effect of zinc on the transformation of haloacetic acids (HAAs) in drinking water, J. Hazard. Mater., 174, 40-46. https://doi.org/10.1016/j.jhazmat.2009.09.013