DOI QR코드

DOI QR Code

Synthesis of Shape Reconfigurable Janus Particles by External pH Stimuli

산세기 조절을 통해 모양 변형이 가능한 야누스 입자의 제조

  • Eom, Naye (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Jongmin (Department of Chemical Engineering, Chungnam National University) ;
  • Kang, Sung-Min (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 엄나예 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 김종민 (충남대학교 공과대학 화학공학과) ;
  • 강성민 (충남대학교 공과대학 화학공학과) ;
  • 이창수 (충남대학교 공과대학 화학공학과)
  • Received : 2014.07.21
  • Accepted : 2014.09.01
  • Published : 2014.09.30

Abstract

This study presents a micromolding for the synthesis of Janus particles with reconfigurable shape by pH stimuli. First, we use acrylic acid (AA) as pH responsive monomer in the hydrophilic part and trimethylolpropane triacylate (TMPTA) in the hydrophobic part, respectively. The change of acidity in solvent induces the swelling of hydrophilic part in the Janus particles. The pH-responsive Janus particles show different swelling ratio of hydrophilic part in according to composition of acrylic acid in diverse range (0-70% v/v) and pH (3-11). As the concentration of acrylic acid in the hydrophilic part and environmental pH increase, the hydrophilic part in the Janus particles is proportionally swelled. Second, we fabricate novel type of Janus particles with two different hydrophilicities. As a proof of concept, we have applied acrylic acid (AA) and 2-(dimethylamino)ethyl methacrylate (DAEMA) into each part because the monomers provide reverse responsive activity. As expected, these Janus particles show different shape anisotropies with reconfigurable property in accordance with the polarity of each part at same acidity of environmental solvent. We envision that the stimuli responsive Janus particles have a wide application from fundamental science to diagnostic apparatus.

본 연구는 미세 몰드 기술을 이용하여 산세기 자극에 따라 모양이 변화하는 야누스 입자를 제조하는 방법에 관한 것이다. 야누스 입자는 산세기(pH) 응답형 단량체인 acrylic acid (AA)를 사용하여 친수성 부분을 제조하고, trimethylolpropane triacylate (TMPTA)를 사용하여 소수성 부분을 제조하였다. 제조된 야누스 입자는 산세기 변화에 따라서 친수성 부분의 팽윤이 유도되며 결과적으로 자극 응답성을 가짐을 증명 하였다. 자극 응답성 정도는 산세기의 범위 또는 AA의 조성을 다양화 함으로써 제어가 가능하다. 더 나아가 야누스 입자의 양쪽 부분이 반대 전하를 띄는 특성을 부여하기 위해 AA와 2-(dimethylamino)ethyl methacrylate (DAEMA)를 사용하여 양극성 야누스 입자를 제조하였다. 양극성 야누스 입자는 동일한 산세기 조건에서 서로 다른 팽윤율을 갖게 되며 비대칭적 형상을 띄게 된다. 결론적으로, 본 연구에서는 야누스 입자의 친수성 부분에 산세기 응답형 단량체를 사용함으로써, 산세기 자극에 의해 가역적으로 모양 변형이 가능한 야누스 입자를 제조하였다. 본 연구를 통해 제조된 자극 응답형 야누스 입자는 향후 바이오 센서나 검출 기구 등에 활용 될 것으로 기대한다.

Keywords

References

  1. Wang, D. A., Williams, C. G., Yang, F. Cher, N. Lee, H., and Elisseeff, J. H., "Bioresponsive Phosphoester Hydrogels for Bone Tissue Engineering," Tissue Eng., 11(1-2), 201-13 (2005). https://doi.org/10.1089/ten.2005.11.201
  2. Alexander, C., "Temperature- and pH-responsive Smart Polymers for Gene Delivery," Expert Opinion Drug Delivery, 3(5), 573-81 (2006). https://doi.org/10.1517/17425247.3.5.573
  3. Han, L. H., Lai, J. H. Yu, S., and Yang, F., "Dynamic Tissue Engineering Scaffolds with Stimuli-responsive Macroporosity Formation," Biomaterials, 34(17), 4251-8 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.051
  4. Riedinger, A., Pernia Leal, M. Deka, S. R., George, C., Franchini, I. R. Falqui, A., Cingolani, R., and Pellegrino, T., "Nanohybrids Based on pH-responsive Hydrogels and Inorganic Nanoparticles for Drug Delivery and Sensor Applications," Nano Lett., 11(8), 3136-41 (2011). https://doi.org/10.1021/nl2011627
  5. Schmaljohann, D., "Thermo- and pH-responsive Polymers in Drug Delivery," Adv. Drug Delivery Rev., 58(15), 1655-70 (2006). https://doi.org/10.1016/j.addr.2006.09.020
  6. Su, J., Chen, F. Cryns, V. L., and Messersmith, P. B., "Catechol Polymers for pH-responsive, Targeted Drug Delivery to Cancer Cells," J. Am. Chem. Soc., 133(31), 11850-3 (2011). https://doi.org/10.1021/ja203077x
  7. Qiu, Y., and Park, K., "Environment-sensitive Hydrogels for Drug Delivery," Adv. Drug Delivery Rev., 53(3), 321-39 (2001). https://doi.org/10.1016/S0169-409X(01)00203-4
  8. Hendrickson, G. R., and Lyon, L. A., "Bioresponsive Hydrogels for Sensing Applications," Soft Matt., 5(1), 29-35 (2009). https://doi.org/10.1039/b811620b
  9. Honda, M., Kataoka, K., Seki, T., and Takeoka, Y., "Confined Stimuli-responsive Polymer Gel in Inverse Opal Polymer Membrane for Colorimetric Glucose Sensor," Langmuir, 25 (14), 8349-56 (2009). https://doi.org/10.1021/la804262b
  10. Dong, L., Agarwal, A. K., Beebe, D. J., and Jiang, H., "Adaptive Liquid Microlenses Activated by Stimuli-responsive Hydrogels," Nature, 442(7102), 551-4 (2006). https://doi.org/10.1038/nature05024
  11. Kim, J., Hanna, J. A., Hayward, R. C., and Santangelo, C. D., "Thermally Responsive Rolling of Thin Gel Strips with Discrete Variations in Swelling," Soft Matt., 8(8), 2375-2381 (2012). https://doi.org/10.1039/c2sm06681e
  12. Gant, R. M., Abraham, A. A., Hou, Y., Cummins, B. M., Grunlan, M. A., and Cote, G. L., "Design of a Self-cleaning Thermoresponsive Nanocomposite Hydrogel Membrane for Implantable Biosensors," Acta Biomaterialia, 6(8), 2903-10 (2010). https://doi.org/10.1016/j.actbio.2010.01.039
  13. Lyon, L. A., Meng, Z., Singh, N., Sorrell, C. D., and St John, A., "Thermo Responsive Microgel-based Materials," Chem. Soc. Rev., 38(4), 865-74 (2009). https://doi.org/10.1039/b715522k
  14. Liechty, W. B., Chen, R., Farzaneh, F., Tavassoli, M., and Slater, N. K., "Synthetic pH-responsive Polymers for Protein Transduction," Adv. Mater., 21(38-39), 3910-3914 (2009). https://doi.org/10.1002/adma.200901733
  15. Dong, D. W., Xiang, B., Gao, W., Yang, Z. Z., Li, J. Q., and Qi, X. R., "pH-responsive Complexes Using Prefunctionalized Polymers for Synchronous Delivery of Doxorubicin and siRNA to Cancer Cells," Biomaterials, 34(20), 4849-59 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.018
  16. Beebe, D. J., Moore, J. S., Bauer, J. M., Yu, Q., Liu, R. H., Devadoss, C., and Jo, B. H., "Functional Hydrogel Structures for Autonomous Flow Control Inside Microfluidic Channels," Nature, 404(6778), 588-90 (2000). https://doi.org/10.1038/35007047
  17. Abbaspourrad, A., Datta, S. S., and Weitz, D. A., "Controlling Release from pH-responsive Microcapsules," Langmuir, 29 (41), 12697-702 (2013). https://doi.org/10.1021/la403064f
  18. Wei, S. C., Pan, M., Li, K., Wang, S., Zhang, J., and Su, C. Y., "A Multistimuli-responsive Photochromic Metal-organic gel," Adv. Mater., 26(13), 2072-7 (2014). https://doi.org/10.1002/adma.201304404
  19. Chen, Z., Zhou, L., Bing, W., Zhang, Z., Li, Z., Ren, J., and Qu, X., "Light Controlled Reversible Inversion of Nanophosphor-stabilized Pickering Emulsions for Biphasic Enantioselective Biocatalysis," J. Am. Chem. Soc., 136(20), 7498-504 (2014). https://doi.org/10.1021/ja503123m
  20. Zhao, Y. L., and Stoddart, J. F., "Azobenzene-based Lightresponsive Hydrogel System," Langmuir, 25(15), 8442-6 (2009). https://doi.org/10.1021/la804316u
  21. Erb, R. M., Sander, J. S., Grisch, R., and Studart, A. R., "Self-shaping Composites with Programmable Bioinspired Microstructures," Nature Commun., 4, 1712 (2013). https://doi.org/10.1038/ncomms2666
  22. Fleige, E., Quadir, M. A., and Haag, R., "Stimuli-responsive Polymeric Nanocarriers for the Controlled Transport of Active Compounds: Concepts and Applications," Adv. Drug Delivery Rev., 64(9), 866-84 (2012). https://doi.org/10.1016/j.addr.2012.01.020
  23. Sisson, A. L., Steinhilber, D., Rossow, T., Welker, P., Licha, K., and Haag, R., "Biocompatible Functionalized Polyglycerol Microgels with Cell Penetrating Properties," Angewandte Chemie, 48(41), 7540-5 (2009). https://doi.org/10.1002/anie.200901583
  24. Basak, S., Nanda, J., and Banerjee, A., "Multi-stimuli Responsive Self-healing Metallo-hydrogels: Tuning of the Gel Recovery Property," Chem. Commun., 50(18), 2356-9 (2014). https://doi.org/10.1039/c3cc48896a
  25. Luchini, A., D. H., Geho, B., Bishop, D., Tran, C., Xia, R. L., Dufour, C. D., Jones, V., Espina, A., Patanarut, W., Zhou, M. M., Ross, A., Tessitore, E. F., Petricoin, 3rd, and Liotta, L. A., "Smart Hydrogel Particles: Biomarker Harvesting: Onestep Affinity Purification, Size Exclusion, and Protection Against Degradation," Nano Lett., 8(1), 350-61 (2008). https://doi.org/10.1021/nl072174l
  26. Gupta, P., Vermani, K. and Garg, S., "Hydrogels: from Controlled Release to pH-responsive Drug Delivery," Drug Discovery Today, 7(10), 569-79 (2002). https://doi.org/10.1016/S1359-6446(02)02255-9
  27. Topham, P. D., Howse, J. R., Crook, C. J., Armes, S. P., Jones, R. A. L., and Ryan, A. J., "Antagonistic Triblock Polymer Gels Powered by pH Oscillations," Macromolecules, 40(13), 4393-4395 (2007). https://doi.org/10.1021/ma071041j
  28. Berger, S., Synytska, A., Ionov, L., Eichhorn, K.-J., and Stamm, M. "Stimuli-Responsive Bicomponent Polymer Janus Particles by "Grafting from" / "Grafting to" Approaches," Macromolecules, 41(24), 9669-9676 (2008). https://doi.org/10.1021/ma802089h
  29. Tu, F., and Lee, D., "Shape-Changing and Amphiphilicity-Reversing Janus Particles with pH-Responsive Surfactant Properties," J. Am. Chem. Soc., 136(28), 9999-10006 (2014). https://doi.org/10.1021/ja503189r
  30. Kang, S. M., Choi, C. H., Kim, J. M., and Lee, C. S., "Synthesis Technology of Functional Colloid Particles and Its Applications," Clean Technol., 18(4), 331-340 (2012). https://doi.org/10.7464/ksct.2012.18.4.331
  31. Choi, C. H., Jeong, J. M., Kang, S. M., Lee, C. S., and Lee, J., "Synthesis of Monodispersed Microspheres from Laplace Pressure Induced Droplets in Micromolds," Adv. Mater., 24 (37), 5078-82, 5077 (2012). https://doi.org/10.1002/adma.201200843
  32. Jeong, J. M., Son, J. W., Choi, C. H., and Lee, C. S., "Micromolding Technique for Controllable Anisotropic Polymeric Particles with Convex Roof," Clean Technol., 18(3), 295-300 (2012). https://doi.org/10.7464/ksct.2012.18.3.295