DOI QR코드

DOI QR Code

Pseudomonas azotoformans HC5 Effective in Antagonistic of Mushrooms Brown Blotch Disease Caused by Pseudomonas tolaasii

버섯 세균갈색무늬병균(Pseudomonas tolaasii)에 항균활성을 가지는 미생물 Pseudomonas azotoformans HC5

  • 이찬중 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 유영미 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 한주연 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 전창성 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 정종천 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 문지원 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 공원식 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 서장선 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 한혜수 (흙살림) ;
  • 차재순 (충북대학교 식물의학과)
  • Received : 2014.05.07
  • Accepted : 2014.06.23
  • Published : 2014.09.30

Abstract

A gram-negative bacterium was isolated from spent substrate of Agaricus bisporus and showed marked antagonistic activity against Pseudomonas tolaasii. The bacterium was identified as Pseudomonas azotoformans by based on the cultural, biochemical and physiological characteristics, and 16S rRNA gene sequence. The isolated bacterium was saprophytic but not parasitic nor pathogenic to cultivation mushroom. The isolated bacterium for P. tolaasii cell was not sufficient for inhibition in vitro. Control efficacy of Pseudomonas azotoformans HC5 to brown blotch of P. tolaasii was 73, 78, and 71% on A. bisporus, Flammulina velutipes, and Pleurotus ostreatus, respectively. In the future, the suppressive bacterium may be useful for development of a biocontrol system.

P. tolaasii에 의해 발생하는 세균갈색무늬병은 버섯재배에서 문제가 되는 대표적인 병해이다. 본 연구에서는 세균갈색무늬병의 생물학적 방제법에 이용할 수 있는 길항미생물의 항균활성과 선발된 길항미생물에 대해 폿트 수준의 생물검정 실험을 실시하였다. 재배중인 느타리 폐면배지와 양송이 퇴비에서 세균갈색무늬병원균을 강하게 억제하는 길항세균 HC5를 선발하였으며, 생리 생화학적 실험과 유전적 실험결과 HC5균주는 P. azotoformans로 동정되었다. P. azotoformans HC5를 양송이, 팽이버섯, 느타리에 처리한 결과 각각 78%, 73%, 71%의 방제효과를 보였다. 따라서 P. azotoformans HC5가 버섯 세균갈색무늬병 방제를 위해 합성농약을 대체할 수 있는 친환경 방제제가 될 수 있을 것으로 생각된다.

Keywords

References

  1. Wells JM, Sapers GM, Fett WF, Butterfield JE, Jones JB, Bouzar H, Miller FC. Postharvest discolorization of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. 'reactans', and P. 'gingeri'. Phytopathology 1996;86:1098-104. https://doi.org/10.1094/Phyto-86-1098
  2. Wong WC, Fletcher JT, Unsworth BA, Preece TF. A note on ginger blotch, a new bacterial disease of the cultivated mushroom, Agaricus bisporus. J Appl Bacteriol 1982;52:43-8. https://doi.org/10.1111/j.1365-2672.1982.tb04371.x
  3. Young JM. Drippy gill: a bacterial disease of cultivated mushrooms caused by Pseudomonas agarici n. sp. N Z J Agr Res 1970;13:977-90. https://doi.org/10.1080/00288233.1970.10430530
  4. Tolaas AG. A Bacterial disease of cultivated mushrooms. Phytopathology 1915;5:51-4.
  5. Paine SG. Studies in bacteriosis . A brown blotch disease of cultivated mushrooms. Ann Appl Biol 1919;5:206-19. https://doi.org/10.1111/j.1744-7348.1919.tb05291.x
  6. Tsuneda A, Suyama K, Muradami S, Ohira I. Occurrence of Pseudomonas tolaasii on fruiting bodies of Lentinula edodes formed on Quercus logs. Mycoscience 1995;36:283-8. https://doi.org/10.1007/BF02268603
  7. Kim JW, Kim KH, Kang HJ. Studies on the pathogenic Pseudomonas causing bacterial disease of cultivated mushroom in Korea. 1. On the causal organisms of the rots of Agaricus bisporus, Pleurotus ostreatus and Lentinus edodes. Kor J Plant Pathol 1994;10:197-210.
  8. Rainey PB, Brodey CL, Johnstone K. Biology of Pseudomonas tolaasii, cause of brown blotch disease of cultivated mushroom. Pages 95-118 in: Advances in Plant Pathology, Vol. 8. J. H. Andrews and I. Tommerup, eds. Academic Press, Inc., New York. 1992.
  9. Goor M, Vantomme R, Swings J, Gillis M, Kersters K, de Ley J. Phenotypic and genotypic diversity of Pseudomonas tolaasii and white line reacting organisms isolated from cultivated mushrooms. J Gen Microbiol 1986;132:2249-64.
  10. Cutri SS, Macauley BJ, Roberts WP. Characteristics of pathogenic non-fluorescent (smooth) and non-pathogenic fluorescent (rough) forms of Pseudomonas tolaasii and Pseudomonas 'gingeri'. J Appl Bacteriol 1984;57:291-8. https://doi.org/10.1111/j.1365-2672.1984.tb01393.x
  11. Lee HI, Cha JS. Cloning of a DNA fragment specific to Pseudomonas tolaasii causing bacterial brown blotch disease of oyster mushroom (Pleurotus ostreatus). Kor J Plant Pathol 1998;14:177-83.
  12. Nutkins JC, Mortishire-Smith RJ, Packman LC, Brodey CL, Rainey PB, Johnstone K, Williams DH. Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. J Am Chem Soc 1991;113:2621-7. https://doi.org/10.1021/ja00007a040
  13. Jourdan F, Lazzaroni S, Mendes BL, Lo Cantrore P, de Julio M, Amodeo P, Iacobellis NS, Evidente A, Motta A. A left-handed alpha-helix containing both L- and D-amino acids: the solution structure of the antimicrobial lipodepsipeptide tolaasin. Proteins 2003;52:534-43. https://doi.org/10.1002/prot.10418
  14. Scherwinski K, Grosch R, Berg G. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol Ecol 2008;64:106-16. https://doi.org/10.1111/j.1574-6941.2007.00421.x
  15. Nair NG, Fahy PC. Bacteria antagonistic to Pseudomonas tolaasii and their control of brown blotch of the cultivated mushroom Agaricus bisporus. J Appl Bacteriol 1972;35:439-42. https://doi.org/10.1111/j.1365-2672.1972.tb03720.x
  16. Olivier JM, Guillaumes J, Martin G. Study of a bacterial disease of mushroom caps. Proceedings of 4th International Conference Plant Pathogenic Bateria, Angers, France. 1978;903-16.
  17. Liao YM, Tu CC, Jeng JJ. Control of bacterial blotch of mushroom. Taiwan Mushrooms 1980;4:34-41.
  18. Park BS, Cho NC, Chun UH. Identification of Pseudomonas fluorescens antagonistic to Pseudomonas tolaasii and its cultivation. Kor J Biotechnol Bioeng 1992;7:296-301.
  19. Thompson JD, Higgins DG, Gibson TJ. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighing position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;34-637.
  20. Jukes TH, Cantor CR. Evolution of protein molecules, In: Munro HN, editor. Mammalian Protein Metabolism. NY: Academic Press; 1969. p. 21-132.
  21. Stainer RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 1966;43:159-271. https://doi.org/10.1099/00221287-43-2-159
  22. Palleroni NJ. Genus. Pseudomonas. In: Krieg NR, Hotr JG, editors. Bergey's manual of systematic bacteriology. Vol. I, Baltmore: Williams and Wilkins; 1984. p. 141-219.
  23. Sasser MJ. Identification of bacteria by gas chromatography of cellular fatty acids. Technical note 101. Newark, DE: Microbial ID Inc. 1990.
  24. Kim MH, Park SW, Kim YK. Bacteriophages of Pseudomonas tolaasii for the biological control of brown blotch disease. J Kor Appl Biol Chem 2011;54:99-104. https://doi.org/10.3839/jksabc.2011.014
  25. Lee CJ, Yoo YM, Han JY, Jhune CS, Cheong JC, Moon JW, Suh JS, Han HS, Cha JS. Isolation of the bacterium Pseudomonas sp. HC1 effective in inactivation of tolaasin produced by Pseudomonas tolaasii. Kor J Mycol 2013;41:248-54. https://doi.org/10.4489/KJM.2013.41.4.248

Cited by

  1. Optimum cultivation conditions for mass production of antagonistic bacterium Alcaligenes sp. HC12 effective in antagonistic of browning disease caused by Pseudomonas agarici vol.14, pp.4, 2016, https://doi.org/10.14480/JM.2016.14.4.191
  2. Study of the Technology Evaluation of Development of Environment-friendly Controlling Method of Mushroom vol.15, pp.11, 2014, https://doi.org/10.5762/KAIS.2014.15.11.6652
  3. Optimum cultivation conditions for mass production of antagonistic bacterium Pseudomonas azotoformans HC5 effective in antagonistic of brown blotch disease caused by Pseudomonas tolaasii vol.13, pp.2, 2015, https://doi.org/10.14480/JM.2015.13.2.97