References
- Abdel Raheem, S.E. (2014), "Dynamic characteristics of hybrid tower of cable-stayed bridges", Steel Compos. Struct., (In press)
- Abdel Raheem, S.E. and Hayashikawa, T. (2007), "Damping characteristics in soil-foundation-superstructure interaction model of cable-stayed bridges tower", J. Construct. Steel, Japanese Soc. Steel Construct. - JSSC, 15, 261-268.
- Abdel Raheem, S.E. and Hayashikawa, T. (2008), "Vibration and damping characteristics of cable-stayed bridges tower", Proceedings of the International Association for Bridge and Structural Engineering - ABSE Conference, Information and Communication Technology (ICT) for Bridges, Buildings and Construction Practice, Helsinki, Finland, June 4-6, 2008, Paper ID. F15.
- Abdel Raheem, S.E. and Hayashikawa, T. (2013a), "Energy dissipation system for earthquake protection of cable-stayed bridge towers", Earthq. Struct., 5(6), 657-678. DOI: 10.12989/eas.2013.5.6.657
- Abdel Raheem, S.E. and Hayashikawa, T. (2013b), "Soil-structure interaction modeling effects on seismic response of a cable-stayed bridge tower", Adv. Struct. Eng., 5-8, 1-17. DOI: 10.1186/2008-6695-5-8
- Abdel Raheem, S.E., Hayashikawa, T. and Dorka, U. (2009), Seismic performance of cable-stayed bridge towers: nonlinear dynamic analysis, structural control and seismic design, VDM Verlag, ISBN: 978-3639202236.
- Abdel Raheem, S.E., Hayashikawa, T. and Hashimoto, I. (2003), "Effects of soil-foundation-superstructure interaction on seismic response of cable-stayed bridges tower with spread footing foundation", J. Struct. Eng. - JSCE, 49, 475-486.
- Adhikari, S. (2002), "Dynamics of non-viscously damped linear systems", J. Eng. Mech. - ASCE, 128(3), 328-339. DOI: 10.1061/(ASCE)0733-9399(2002)128:3(328)
- Adhikari, A. (2004), "Optimal complex modes and an index of damping non-proportionality", Mech. Syst. Signal Pr., 18, 1-27. DOI: 10.1016/S0888-3270(03)00048-7
- Angeles, J. and Ostrovskaya, S. (2002), "The proportional damping matrix of arbitrarily damped linear mechanical systems", J. Appl. Mech. - T ASME, 69, 649- 656. doi:10.1115/1.1483832
- Atkins, J.C. and Wilson, J.C. (2000), "Analysis of damping in earthquake response of cable-stayed bridges", Proceedings of the 12th World Conference on Earthquake Engineering, 12WCEE, Auckland, New Zealand, Paper ID 1468, 30 January - 4 February.
- Bert, C.W. (1973), "Material damping: an introductory review of mathematical models, measure and experimental techniques", J. Sound Vib., 29(2), 129-153. https://doi.org/10.1016/S0022-460X(73)80131-2
- Bread, C.F. (1979), "Damping in structural joints", J. Shock Vib. Dig., 11(9), 35 -41. https://doi.org/10.1177/058310247901100609
- Chang, S.Y. (2013), "Nonlinear performance of classical damping", Earthq. Eng. Eng. Vib., 12, 279-296. https://doi.org/10.1007/s11803-013-0171-3
- Chopra A.K. (1995), Dynamic of structures - theory and application to earthquake engineering, Prentice-Hall, Englewood Cliffs, NJ.
- Claret, A.M. and Venancio-Filho, F. (1991), "A modal superposition method pseudo-force method for dynamic analysis of structural systems with non-proportional damping", Earthq. Eng. Struct. Eng., 20, 303-315. DOI: 10.1002/eqe.4290200402
- Clough, R.W. and Mojtadhedi, S. (1976), "Earthquake response analysis considering non-proportional damping", Earthq. Eng. Struct. D., 4(5), 489-496. DOI: 10.1002/eqe.4290040506
- Corte´s, F. and Elejabarrieta, M.J. (2006), "Computational methods for complex eigen problems in finite element analysis of structural systems with viscoelastic damping treatments", Comput. Method. Appl. M., 195, 6448-6462. DOI: 10.1016/j.cma.2006.01.006.
- Ding, N.H., Lin, L.X. and Chen, J.D. (2011), "Seismic response analysis of double chains suspension bridge considering non-classical damping", Adv. Mater. Res., 255-260, 826-830. DOI: 10.4028/AMR.255-260.826
- Du, Y., Li, H. and Spencer, Jr B.F. (2002), "Effect of non-proportional damping on seismic isolation", J. Struct. Control, 9, 205-236. DOI: 10.1002/stc.13
- Falsone, G. and Muscolino, G. (2004), "New real-value modal combination rules for non-classically damped structures", Earthq. Eng. Struct. Eng., 33, 1187-1209. DOI: 10.1002/eqe.394
- Ganev, T., Yamazaki, F. and Katayama, T. (1995), "Observation and numerical analysis of soil-structure interaction of reinforced concrete tower", Earthq. Eng. Struct. D., 24(4), 491-503. https://doi.org/10.1002/eqe.4290240403
- Harada, T., Kubo, K. and Katayama, T. (1981), Dynamic soil-structure interaction analysis by continuum formulation method, Report of the Institute of Industrial Science, University of Tokyo, 29(5),139-194.
- Hayashikawa, T., Abdel Raheem, S.E. and Hashimoto, I. (2004), "Nonlinear seismic response of soil-foundation-structure interaction model of cable-stayed bridges tower", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 1-6 August, Paper No. 3045.
- Huang, B.C., Leung, A.Y.T., Lam, K.M. and Cheung Y.K. (1995), "Analytical determination of equivalent modal damping ratios of a composite tower in wind-induced vibrations", Comput. Struct., 59(2), 311-316. DOI: 10.1016/0045-7949(95)00258-8
- Ibrahimbegovic, A. and Wilson, E.L. (1989), "Simple numerical algorithms for the mode superposition analysis of linear structural systems with non-proportional damping", Comput. Struct., 33(2), 523-531. DOI: 10.1016/0045-7949(89)90026-6
- Ibrahimbegovic, A., Chen, H.C., Wilson, E.L. and Taylor, R.L. (1990), "Ritz method for dynamic analysis of large discrete linear systems with non-proportional damping", Earthq. Eng. Struct. D., 19(6), 877-889. DOI: 10.1002/eqe.4290190608
- Igusa, T., Der Kiureghian, A. and Sackman, J.L. (1984), "Modal decomposition method for stationary response of non-classically damped systems", Earthq. Eng. Struct. D., 12(1), 121-136. DOI: 10.1002/eqe.4290120109
- Japan Road Association (1996), Reference for highway bridge design, specification for highway bridges-part IV substructures, Chapter 7-9.
- Japan Road Association (2002), Specification for highway bridges-Part V Seismic design, Maruzen, Tokyo, Japan.
- Jehel, P., Leger, P. and Ibrahimbegovic, A. (2014), "Initial versus tangent stiffness-based Rayleigh damping in inelastic time history seismic analyses", Earthq. Eng. Struct. D., 43(3), 467-484. https://doi.org/10.1002/eqe.2357
- Johnson, C.D. and Kienhholz, D.A. (1982), "Finite element prediction of damping in structures", Am. Inst. Aeronaut. Astronaut. J., 20(9), 1284-1290. https://doi.org/10.2514/3.51190
- Kawashima, K., Unjoh, S. and Tunomoto, M. (1993), "Estimation of damping ratio of cable-stayed bridges for seismic design", J. Struct. Eng. - ASCE, 119(4), 1015-1031. DOI: 10.1061/(ASCE)0733-9445(1993)119:4(1015)
- Khanlari, K. and Ghafory-Ashtiany, M. (2005), "New approaches for non-classically damped system Eigen analysis", Earthq. Eng. Struct. Eng., 34, 1073-1087. DOI: 10.1002/eqe.467
- Kusainov, A.A. and Clough, R.W. (1988), Alternatives to standard mode superposition for analysis of non-classically damped systems, UCB/EERC-88/09, University of California at Berkeley, CA.
- Lee, S.H., Min, K.W., Hwang, J.S. and Kim, J. (2004), "Evaluation of equivalent damping ratio of a structure with added dampers", Eng. Struct., 26, 335-346. DOI: 10.1016/j.engstruct.2003.09.014
- Ma, F. and Morzfeld, M. (2011), "A general methodology for decoupling damped linear systems", Proceedings of the 12th East Asia-Pacific Conference on Structural Engineering and Construction - EASEC12, Procedia Engineering, 14, 2498-2502. DOI: 10.1016/j.proeng.2011.07.314
- Papageorgiou, A.V. and Gantes C.J. (2010), "Equivalent modal damping ratios for concrete/steel mixed structures", Comput. Struct., 88 (19-20), 1124-1136. DOI: 10.1016/j.compstruc.2010.06.014
- Papageorgiou, A.V. and Gantes C.J. (2011), "Equivalent uniform damping ratios for linear irregularly damped concrete/steel mixed structures", Soil Dyn. Earthq. Eng., 31(3), 418-430. DOI: 10.1016/j.soildyn.2010.09.010
- Park, D. and Hashash, Y.M.A. (2004), "Soil damping formulation in nonlinear time domain site response analysis", J. Earthq. Eng., 8(2), 249-274. DOI: 10.1080/13632460409350489
- Perotti, F. (1994), "Analytical and numerical techniques for the dynamic analysis of non-classically damped linear systems", Soil Dyn. Earthq. Eng., 13,197-212. DOI: 10.1016/0267-7261(94)90018-3
- Petrini, L., Maggi, C., Priestley, M.J.N. and Calvi, G.M. (2008), "Experimental verification of viscous damping modelling for inelastic time history analyses", J. Earthq. Eng., 12(1), 125-145. DOI:10.1080/13632460801925822
- Prater, G. and Singh, R. (1990), "Eigenproblem formulation, solution and interpretation for non-proportionally damped continuous beams", J. Sound Vib., 143(1), 125-142. DOI: 10.1016/0022-460X (90)90572-H
- Prells, U. and Friswell, M.I. (2000), "A measure of non-proportional damping", Mech. Syst. Signal Pr., 14(2), 125-137. DOI: 10.1006/mssp.1999.1280
- Qin, Q. and Lou, L. (2000), "Effects of non proportional damping on the seismic responses of suspension bridges", Proceedings of the 12th world conference of earthquake Engineering, Auckland, New Zealand, 30 January - 4 February 2000, paper No. 0529.
- Qu, Z.Q., Selvam, R.P. and Jung, Y. (2003), "Model condensation for non-classically damped systems-part ii: iterative schemes for dynamic condensation", Mech. Syst. Signal Pr., 17(5), 1017-1032. DOI:10.1006/mssp.2002.1527
- Raggett, J.D. (1975), "Estimation of damping of real structures," J. Struct. Division -ASCE, 101(9), 1823-1835.
- Roesset, J.M., Whitman, R.V. and Dobry, R. (1973), "Modal analysis for structures with foundation interaction", J. Struct. Division - ASCE, 99, 399-415.
- Veletsos, A.S. and Ventura, C.E. (1986), "Model analysis of non-classically damped linear systems", Earthq. Eng. Struct. D., 14, 217-243. DOI: 10.1002/eqe.4290140205
- Villaverde, R. (2008), "A complex modal superposition method for the seismic analysis of structures with supplemental dampers", Proceedings of the 14th World Conference on Earthquake Engineering, 14WCEE, Beijing, China.
- Wagner, N. and Adhikari, S. (2003), "Symmetric state-space formulation for a class of non-viscously damped systems", The American Institute of Aeronautics and Astronautics, AIAA J., 41(5), 951-956. https://doi.org/10.2514/2.2032
- Warburton, G.B. and Soni, S.R. (1977), "Errors in response calculations for non-classically damped structures", Earthq. Eng. Struct. D., 5(4), 365-376. DOI: 10.1002/eqe.4290050404
- Xu, J., DeGrassi, G. and Chokshi, N. (2004a), "A NRC-BNL benchmark evaluation of seismic analysis methods for non-classically damped coupled systems", Nucl. Eng. Des., 228, 345-366. DOI:10.1016/j.nucengdes.2003.06.019.
- Xu, J., DeGrassi, G. and Chokshi, N. (2004b), "Insights Gleaned from NRC-BNL benchmark evaluation of seismic analysis methods for non-classically damped coupled systems", J. Pressure Vessel Technol., 126, 75 -84. DOI:10.1115/1.1638388.
Cited by
- Frequency analysis of beams with multiple dampers via exact generalized functions vol.5, pp.2, 2016, https://doi.org/10.12989/csm.2016.5.2.157
- A simplified seismic design approach for mid-rise buildings with vertical combination of framing systems vol.99, 2015, https://doi.org/10.1016/j.engstruct.2015.05.019