References
- ACI Committee 408 (2003), "Bond and development of straight reinforcing bars in tension (408R-03)", American Concrete Institute, Farmington Hills, Mich., 49.
- ACI Committee 318 (2008), "Building code requirements for structural concrete (318-08)", American Concrete Institute, Farmington Hills, Mich., 430 pp.
- Azizinamini, A., Pavel, R., Hatfield, E. and Ghosh, S.K. (1996), "Behavior of spliced reinforcing bars embedded in high strength concrete", ACI. Struct. J., 96(5), 826-835.
- CSA Standard A23.3 (2004), "Design of concrete structures for buildings", Canadian Standards Association, Toronto, Ontario, Canada., 240.
- Cevik, A., Gugas, M.T., Guzelbey, I.H. and Filiz, H. (2010), "Soft computing based formulation for strength enhancement of CFRP confined concrete cylinders", Adv. Eng. Softw., 41(4), 527-536. https://doi.org/10.1016/j.advengsoft.2009.10.015
- Choi, O.C., Ghaffari, H.H., Darwin, D. and Mccabe, S.L. (1990), Bond of Epoxy-Coated Reinforcement to Concrete: Bar Parameters, SM Report No. 25, University of Kansas Center for Research, Lawrence, Kansas., 217 pp.
- Choi, O.C., Ghaffari, H.H., Darwin, D. and Mccabe, S.L. (1991), "Bond of epoxy-coated reinforcement: bar parameters", ACI. Mater. J., 88(2), 207-217.
- CEB-FIP (1990), "Model Code for Concrete Structures", Comite Euro-International du Beton, c/o Thomas Telford, London .
- Darwin, D., Tholen, M.L., Idun, E.K. and Zuo, J. (1996a), "Splice strength of high relative rib area reinforcing bars", ACI. Struct. J., 93(1), 95-107.
- Darwin, D., Zuo, J., Tholen, M.L. and Idun, E.K. (1996b), "Development length criteria for conventional and high relative rib area reinforcing bars", ACI. Struct. J., 93(3), 347-359.
- Darwin, D., Barham, S., Kozul, R. and Luan, S. (2001), "Fracture energy of high-strength concrete", ACI. Mater. J., 98(5), 410-417.
- Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15(7), 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X
- Dahou, Z., Sbartai, Z.M., Castel, A. and Ghomari, F. (2009), "Artificial neural network model for steelconcrete bond prediction", Eng. Struct., 31(8), 1724-1733. https://doi.org/10.1016/j.engstruct.2009.02.010
- EC2 (2004), "Design of concrete structures-Part 1.1: general rules and rules for buildings (EC2)", European Committee for Standardization Eurocode 2, Brussels, Belgium., 225 pp.
- Ferguson, P.M. and Thompson, J.N. (1965), "Development length for large high strength reinforcing bars", ACI. J. Proc., 62(1), 71-94.
- Golafshani, E.M., Rahai, A. and Sebt, M.H. (2014), "Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete", Mater. Struct., DOI 10.1617/s11527-014-0256-0.
- Golafshani, E.M., Rahai, A., Sebt, M.H. and Akbarpour, H. (2012), "Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic", Constr. Build. Mater., 36, 411-418. https://doi.org/10.1016/j.conbuildmat.2012.04.046
- Hacha, R.E., Agroudy, H.E. and Rizkalla, S.H. (2012), "Bond characteristics of high-strength steel reinforcement", ACI. Struct. J., 103(6), 771-782.
- Harajli, M.H. and Mabsout, M.E. (2002), "Evaluation of bond strength of steel reinforcing bars in plain and fiber-reinforced concrete", ACI. Struct. J., 99(4), 509-517.
- Harajli, M.H., Hamad, B.S. and Rteil, A.A. (2004), "Effect of confinement on bond strength between steel bars and concrete", AC.I Struct. J., 101(5), 595-603.
- Hester, C.J., Salamizavaregh, S., Darwin, D. and Mccable, A.L. (1991), "Bond of epoxy-coated reinforcement to concrete: splices", SL report 91-1, University of Kansas Center for Research, Lawrence., 66 pp.
- Hester, C.J., Salamizavaregh, S., Darwin, D. and Mccable, A.L. (1993), "Bond of epoxy-coated reinforcement to concrete: splices", ACI. Struct. J., 90(1), 89-102.
- Hinchliffe, M.P., Willis, M.J., Hiden, H.G., Tham, M.T., McKay, B and Barton, G.W. (1996), "Modelling chemical process systems using a multi-gene genetic programming algorithm", Proceedings of the First Annual Conference in Genetic Programming, MIT Press Cambridge, MA, USA.
- Hassan, T.K., Lucier G.W. and Rizkalla, S.H. (2012), "Splice strength of large diameter, high strength steel reinforcing bars", Constr. Build. Mater., 26(1), 216-225.
- Ichinose, T., Kanayama, Y, Inoune, Y. and Bolander, J.E. (2004), "Size effect on bond strength of deformed bars", Constr. Build. Mater., 18(7), 549-558. https://doi.org/10.1016/j.conbuildmat.2004.03.014
- JSCE (2007), "Standard specification for concrete structures: design (JSCE)", Japan Society of Civil Engineers, Tokyo, Japan., 503 pp.
- Kara, I.F. (2011), "Prediction of shear strength of FRP-reinforced concrete beams without stirrups based on genetic programming", Adv. Eng. Softw.., 42(6), 295-304. https://doi.org/10.1016/j.advengsoft.2011.02.002
- Kose, M.M. and Kayadelen, C. (2010), "Modeling of transfer length of prestressing strands using genetic programming and neuro-fuzzy", Adv. Eng. Softw., 41(2), 315-322. https://doi.org/10.1016/j.advengsoft.2009.06.013
- Koza, J.R. (1992), Genetic Programming: on the Programming of Computers by Means of Natural Selection, MIT Press Cambridge, MA, USA.
- Lutz, L.A. and Gergely, P. (1967), "Mechanics of bond and slip of deformed bars in concrete", ACI. J. Proc., 64(11), 711-721.
- Mathey, R. and Watstein, D. (1961), "Investigation of bond in beam and pull-Out specimens with high-yieldstrength deformed bars", ACI. J. Proc., 58(9), 1071-1090.
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw.., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014
- Orangun, C., Jirsa, J.O. and Breen, J.E. (1977), "A reevaluation of test data on development length and splices", ACI. J. Proc., 74(3), 114-122.
- Ozbay, E., Gesoglu, M. and Guneyisi, E. (2008), "Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming", Constr. Build. Mater., 22(8), 1831-1840. https://doi.org/10.1016/j.conbuildmat.2007.04.021
- Perez, J.L., Cladera, A., Rabual, J.R. and Abella, F.M. (2010), "Optimization of existing equations using a new Genetic Programming algorithm: Application to the shear strength of reinforced concrete beams", Adv. Eng. Software., 50, 82-96.
- Perez, J.L., Cladera, A., Rabual, J.R. and Abella, F.M. (2012), "Optimal adjustment of EC-2 shear formulation for concrete elements without web reinforcement using Genetic Programming", J. Eng. Struct., 32(11), 3452-3466.
- Perez, J.L., Vieito, I., Rabunal, J. and Martinez-Abella, F. (2013), Genetic Programming to Improvement FIB Model, Lecture notes in computer science., In Advances in Computational Intelligence., Springer Berlin Heidelberg., 7902, 463-470.
- Ramezanianpour, A.A. and Davarpanah, A. (2002), "Concrete properties estimation and mix design optimization based on neural networks", Proceedings of the World Conference on concrete materials and structures (WCCNS), Kualalumpur, Malaysia.
- Rezansoff, T., Konkankar, U.S. and Fu, Y.C. (1991), Confinement limits for tension lap splices under static loading, ReportNo.S7N 0W0, University of Saskatchewan.
- Saridemir, M. (2010), "Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash", Constr. Build. Mater., 24(10), 1911-1919. https://doi.org/10.1016/j.conbuildmat.2010.04.011
- Searson, D. (2009), "Genetic programming & symbolic regression for MATLAB (GPTIPS)", http://gptips.sourceforge.net.
- Seliem, H.M., Hosny, A., Rizkalla, S., Zia, P., Briggs, M., Miller, S., Darwin, D., Browning, J., Glass, G.M., Hoyt, K., Donnelly, K. and Jirsa, J.O. (2009), "Bond characteristics of ASTM A1035 steel reinforcing bars", ACI. Struct. J., 106(4), 530-539.
- Sonebi, M. and Cevik, A. (2009), "Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash", Constr. Build. Mater., 23(7), 2614-2622. https://doi.org/10.1016/j.conbuildmat.2009.02.012
- Tanyildizi, H. (2009), "Fuzzy logic model for the prediction of bond strength of high-strength lighweight concrete", Adv. Eng. Softw., 40(3), 161-169. https://doi.org/10.1016/j.advengsoft.2007.05.013
- Tanyildizi, H. and Cevik, A. (2010), "Modeling mechanical performance of lightweight concrete containing silica fume exposed to high temperature using genetic programming", Constr. Build. Mater., 24(12), 2612-2618. https://doi.org/10.1016/j.conbuildmat.2010.05.001
- Tepfers, R. (1973), "A theory of bond applied to overlapping tensile reinforcement splices for deformed bars", publication 73:2, division of concrete structures, Goteborg, Sweden, Chalmers University of Technology., 328 pp.
- Untrauer, R.E. (1965), "Discussion of development length for large high strength reinforcing bars", ACI. J. Proc., 62(9), 1153-1154.
- Zuo, J. and Darwin, D. (1998), Bond Strength of High Relative Rib Area Reinforcing Bars, SM Report No. 46, University of Kansas Center for Research, Lawrence, Kansas, USA., 350 pp.
- Zuo, J. and Darwin, D. (2000), "Splice strength of conventional and high relative rib area bars in normal and high-strength concrete", ACI. Struct. J., 97(4), 630-641.
Cited by
- Implementation of bond-slip effects on behaviour of slabs in structures vol.16, pp.2, 2015, https://doi.org/10.12989/cac.2015.16.2.311
- Local bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete vol.16, pp.3, 2015, https://doi.org/10.12989/cac.2015.16.3.449
- Influence of ground pumice powder on the bond behavior of reinforcement and mechanical properties of self-compacting mortars vol.20, pp.3, 2014, https://doi.org/10.12989/cac.2017.20.3.283
- Prediction of creep in concrete using genetic programming hybridized with ANN vol.21, pp.5, 2014, https://doi.org/10.12989/cac.2018.21.5.513
- Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures vol.66, pp.4, 2014, https://doi.org/10.12989/sem.2018.66.4.477
- Local bond-slip behavior of fiber reinforced LWAC after exposure to elevated temperatures vol.73, pp.4, 2020, https://doi.org/10.12989/sem.2020.73.4.437
- A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach vol.27, pp.4, 2014, https://doi.org/10.12989/cac.2021.27.4.333
- Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete vol.28, pp.2, 2014, https://doi.org/10.12989/cac.2021.28.2.221