DOI QR코드

DOI QR Code

Efficient In Vitro Labeling Rabbit Bone Marrow-Derived Mesenchymal Stem Cells with SPIO and Differentiating into Neural-Like Cells

  • Zhang, Ruiping (Department of Radiology,First Hospital,Shanxi Medical University) ;
  • Li, Jing (State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) ;
  • Li, Jianding (Department of Radiology,First Hospital,Shanxi Medical University) ;
  • Xie, Jun (Department of Molecular Biology,Shanxi Medical University)
  • 투고 : 2014.01.20
  • 심사 : 2014.08.11
  • 발행 : 2014.09.30

초록

Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and $[Ca^{2+}]_i$ between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.

키워드

참고문헌

  1. Arbab, A.S., Bashaw, L.A., Miller, B.R., Jordan, E.K., Lewis, B.K., Kalish, H., and Frank, J.A. (2003). Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229, 838-846. https://doi.org/10.1148/radiol.2293021215
  2. Daadi, M.M., Hu, S., Klausner, J., Li, Z., Sofilos, M., Sun, G., Wu, J.C., and Steinberg, G.K.(2013). Imaging neural stem cell graftinduced structural repair in stroke. Cell Transplant 22, 881-892. https://doi.org/10.3727/096368912X656144
  3. Eftekharpour, E., Karimi-abdolrezaee, S., and Fehlings, M.G. (2008). Current status of experimental cell replacement approaches to spinal cord injury. Neurosurg. Focus 24, E18.
  4. Farrell, E., Wielopolski, P., Pavljasevic, P., van Tiel, S., Jahr, H., Verhaar, J., Weinans, H., Krestin, G., O'Brien, F.J., et al. (2008). Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochem. Biophys. Res. Commun. 369, 1076-1081. https://doi.org/10.1016/j.bbrc.2008.02.159
  5. Gutierrez-Fernandez, M., Rodriguez-Frutos, B., Ramos-Cejudo, J., Teresa Vallejo-Cremades, M., Fuentes, B., Cerdan, S., and Diez-Tejedor, E. (2013). Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res. Ther. 4, 11. https://doi.org/10.1186/scrt159
  6. Harris, V.K., Yan, Q.J., Vyshkina, T., Sahabi, S., Liu, X., and Sadiq, S.A. (2012). Clinical and pathological effects of intrathecal injection of mesenchymal stem cell-derived neural progenitors in an experimental model of multiple sclerosis. J. Neurol. Sci. 313, 167-177 https://doi.org/10.1016/j.jns.2011.08.036
  7. Hidalgo, C., and Nunez, M.T. (2007). Calcium, iron and neuronal function. IUBMB Life 59, 280-285. https://doi.org/10.1080/15216540701222906
  8. Hsieh, J.Y., Wang, H.W., Chang, S.J., Liao, K.H., Lee, I.H., Lin, W.S., Wu, C.H., Lin, W.Y., and Cheng, S.M. (2013). Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One 8, e72604. https://doi.org/10.1371/journal.pone.0072604
  9. Jang, S.,Cho, H.H.,Cho, Y.B., Park, J.S., and Jeong, H.S. (2010). Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol. 11, 25. https://doi.org/10.1186/1471-2121-11-25
  10. Jing, X.H., Yang, L., Duan, X.J., Xie, B., Chen, W., Li, Z., and Tan, H.B. (2008).In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine 75, 432-438. https://doi.org/10.1016/j.jbspin.2007.09.013
  11. Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., and Nolta, J.A. (2010). Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 5, 933-946. https://doi.org/10.2217/rme.10.72
  12. Ke, Y.Q., Hu, C.C., Jiang, X.D., Yang, Z.J., Zhang, H.W., Ji, H.M., Zhou, L.Y., Cai, Y.Q., Qin, L.S., and Xu, R.X. (2009).In vivo magnetic resonance tracking of Feridex-labeled bone marrowderived neural stem cells after autologous transplantation in rhesus monkey. J. Neurosci. Methods 179, 45-50. https://doi.org/10.1016/j.jneumeth.2009.01.007
  13. Kuhn, N.Z., and Tuan, R.S. (2010). Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J. Cell. Physiol. 222, 268-277. https://doi.org/10.1002/jcp.21940
  14. Li, K., Qin, J., Wang, X., Xu, Y., Shen, Z., Lu, X., and Zhang, G. (2013). Magnetic resonance imaging monitoring dual-labeled stem cells for treatment of mouse nerve injury. Cytotherapy 15, 1275-1285. https://doi.org/10.1016/j.jcyt.2013.03.009
  15. Lu, S.S., Liu, S., Zu, Q.Q., Xu, X.Q., Yu, J., Wang, J.W., Zhang, Y., and Shi, H.B. (2013).In vivo MR imaging of intraarterially delivered magnetically labeled mesenchymal stem cells in a canine stroke model. PLoS One 8, e54963. https://doi.org/10.1371/journal.pone.0054963
  16. Maric, D., Fiorio Pla, A., Chang, Y.H., and Barker, J.L. (2007). Selfrenewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors. J. Neurosci. 27, 1836-1852. https://doi.org/10.1523/JNEUROSCI.5141-06.2007
  17. Moraes, L., Vasconcelos-dos-Santos, A., Santana, F.C., Godoy, M.A., Rosado-de-Castro, P.H., Jasmin, Azevedo-Pereira, R.L., Cintra, W.M., Gasparetto, E.L., Santiago, M.F., et al. (2012). Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington's disease. Stem Cell Res. 9, 143-155. https://doi.org/10.1016/j.scr.2012.05.005
  18. Murdoch, B., and Roskams, A.J. (2013). Fibroblast growth factor signaling regulates neurogenesis at multiple stages in the embryonic olfactory epithelium. Stem Cells Dev. 22, 525-537. https://doi.org/10.1089/scd.2012.0406
  19. Neri, M., Maderna, C., Cavazzin, C., Deidda-Vigoriti, V., Politi, L.S., Scotti, G., Marzola, P., Sbarbati, A., Vescovi, A.L., andGritti, A. (2008). Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking. Stem Cells 26, 505-516. https://doi.org/10.1634/stemcells.2007-0251
  20. Peldschus, K., Kaul, M., Nolte-Ernsting, C., Adam, G., and Ittrich, H. (2007). Magnetic resonance imaging of single SPIO labeled mesenchymal stem cells at 3 Tesla. Rofo 179, 473-479. https://doi.org/10.1055/s-2006-927370
  21. Pincus, D.W., Keyoung, H.M., Harrison-Restelli, C., Goodman, R.R., Fraser, R.A., Edgar, M., Sakakibara, S., Okano, H., Nedergaard, M., and Goldman, S.A. (1998). Fibroblast growthfactor-2 brain derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells. Ann. Neurol. 43, 576-585. https://doi.org/10.1002/ana.410430505
  22. Reddy, A.M., Kwak, B.K., Shim, H.J., Ahn, C., Lee, H.S., Suh, Y.J., and Park, E.S. (2010). In vivo tracking of mesenchymal stem cells labeled with a novel chitosan-coated superparamagnetic iron oxide nanoparticles using 3.0T MRI. J. Korean Med. Sci. 25, 211-219. https://doi.org/10.3346/jkms.2010.25.2.211
  23. Sun, J.H., Zhang, Y.L., Qian, S.P., Yu, X.B., Xie, H.Y., Zhou, L., and Zheng, S.S. (2012). Assessment of biological characteristics of mesenchymal stem cells labeled with superparamagnetic iron ox ide particles in vitro. Mol. Med. Rep. 5, 317-320.
  24. Suzuki, H.,Taguchi, T., Tanaka, H., Kataoka, H., Li, Z., Muramatsu, K., Gondo, T., and Kawai, S. (2004). Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochem. Biophys. Res. Commun. 322, 918-922. https://doi.org/10.1016/j.bbrc.2004.07.201
  25. Van Velthoven, C.T., Sheldon, R.A., Kavelaars, A., Derugin, N., Vexler, Z.S., Willemen, H.L., Maas, M., Heijnen, C.J., and Ferriero, D.M. (2013). Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke 44, 1426-1432. https://doi.org/10.1161/STROKEAHA.111.000326
  26. Walczak, P., and Bulte, J.W. (2007). The role of noninvasive cellular imaging in developing cell-based therapies for neurodegenerative disorders. Neurodegener. Dis. 4, 306-313. https://doi.org/10.1159/000101887
  27. Wang, N., Xu, Y., Qin, T., Wang, F.P., Ma, L.L., Luo, X.G., and Zhang, T.C. (2013). Myocardin-related transcription factor-A is a key regulator in retinoic acid-induced neural-like differentiation of adult bone marrow-derived mesenchymal stem cells. Gene 523, 178-186. https://doi.org/10.1016/j.gene.2013.03.043
  28. Walczak, P., Kedziorek, D.A., Gilad, A.A.,Barnett, B.P.,and Bulte, J.W. (2007). Applicability and limi-tations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover:the case of the shiverer dysmyelinated mousebrain. Magn. Reson. Med. 58, 261-269. https://doi.org/10.1002/mrm.21280
  29. Woodbury, D., Emily, J., Schwarz, E., Prockop, D.J., and Black, I.B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364-370. https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  30. Yan, M., Sun, M., Zhou, Y., Wang, W., He, Z., Tang, D., Lu, S., Wang, X., Li, S., Wang, W., et al. (2013). Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopamine neurons mediated by the Lmx1a and neurturinin vitro: potential therapeutic application for Parkinson's disease in a rhesus monkey model. PLoS One 8, e64000. https://doi.org/10.1371/journal.pone.0064000

피인용 문헌

  1. Lost signature: progress and failures in in vivo tracking of implanted stem cells vol.99, pp.23, 2015, https://doi.org/10.1007/s00253-015-6965-7
  2. In vivomagnetic resonance imaging of iron oxide-labeled, intravenous-injected mesenchymal stem cells in kidneys of rabbits with acute ischemic kidney injury: detection and monitoring at 1.5 T vol.37, pp.8, 2015, https://doi.org/10.3109/0886022X.2015.1073542
  3. Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways vol.9, pp.2, 2017, https://doi.org/10.1002/wnan.1419
  4. Role of autophagy on bone marrow mesenchymal stem-cell proliferation and differentiation into neurons vol.13, pp.2, 2016, https://doi.org/10.3892/mmr.2015.4673
  5. Characterization of an iron oxide nanoparticle labelling and MRI-based protocol for inducing human mesenchymal stem cells into neural-like cells vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-03863-x
  6. Iron oxide labeling does not affect differentiation potential of human bone marrow mesenchymal stem cells exhibited by their differentiation into cardiac and neuronal cells vol.448, pp.1-2, 2018, https://doi.org/10.1007/s11010-018-3309-9
  7. Magnetic Composite Biomaterials for Neural Regeneration vol.7, pp.None, 2014, https://doi.org/10.3389/fbioe.2019.00179
  8. Superparamagnetic Iron Oxide Nanoparticles: Cytotoxicity, Metabolism, and Cellular Behavior in Biomedicine Applications vol.16, pp.None, 2014, https://doi.org/10.2147/ijn.s321984