DOI QR코드

DOI QR Code

반응표면분석법을 이용한 쌀귀리 단백질의 알칼리 추출 공정 최적화

Optimization of Alkali Extraction for Preparing Oat Protein Concentrates from Oat Groat by Response Surface Methodology

  • Jeong, Yong-Seon (Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University) ;
  • Kim, Jeong-Won (Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University) ;
  • Lee, Eui-Seok (Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University) ;
  • Gil, Na-Young (Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University) ;
  • Kim, San-Seong (Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University) ;
  • Hong, Soon-Taek (Department of Food Science and Technology, College of Agriculture and Life Science, Chungnam National University)
  • 투고 : 2014.04.29
  • 심사 : 2014.06.17
  • 발행 : 2014.09.30

초록

알칼리 추출법을 이용하여 쌀귀리로부터 단백질을 추출하고 추출수율을 최적화하기 위한 알칼리 농도 조건 및 침전 pH 조건을 반응표면분석을 통해 검토하였다. 추출수율은 추출용매인 알칼리 농도가 증가할수록 그리고 침전 pH 4.9 부근에서 높은 경향을 보였으며, 알칼리 농도가 침전 pH에 비하여 보다 큰 영향을 미치는 것으로 나타났다. 알칼리 추출 공정으로 얻어진 귀리 단백질 농축물의 질소용해지수는 등전점 부근인 pH 5에서 최소값을 나타내었고, pH 3 이하, pH 7 이상에서는 급격히 증가하였다. 알칼리 추출 공정의 최적화를 위한 회귀분석 결과, 알칼리 농도 0.06 N, 침전 pH 4.7에서 최대 수율 85.89%로 예측되었으며 예측모델식과 실제 측정값을 비교하였을 때 유의적인 차이가 크게 나타나지 않아 설계된 실험모델식은 적합한 것으로 나타났다. 따라서 기존의 연구들은 알칼리 추출법을 이용한 귀리 단백질 추출 시 알칼리 농도와 침전 pH가 각기 다름을 보였지만, 본 연구를 통하여 귀리 단백질 농축물 제조를 위한 알칼리 추출 공정의 최적 조건은 알칼리 농도 0.06 N, 침전 pH 4.7인 것으로 확인되었다.

In this study, an attempt was made to produce oat protein concentrates from defatted oat groat by alkali extraction. Independent variables formulated by D-optimal design were NaOH concentration (X1, 0.005~0.06 N) for extraction and precipitation pH (X2, pH 4.0~6.0), and the dependent variable was extraction yield (Y1, %). Experimental results were analyzed by response surface methodology to determine optimized extraction conditions. Extraction yield increased both with an increase in NaOH concentration of the extraction solution and when approaching a precipitation pH of 4.9, and NaOH concentrations were a major influencing parameter. Solubility of oat protein concentrates showed a minimum value (i.e., 0.1%) at pH 5 and increased substantially at pH values in the range of ${\leq}$ pH 3 or ${\geq}$ pH 7, reaching a maximum value at pH 11 (i.e., 76%). Regression equation coincided well with the results of the experiment. Optimized extraction conditions to maximize extraction yield were 0.06 N NaOH (X1) for extraction and pH 4.7 (X2) for precipitation.

키워드

참고문헌

  1. Macrae R, Robinson R, Sadler MJ. 1993. Encyclopedia of food science, food technology and nutrition. Academic Press, San Diego, CA, USA. p 3319-3322.
  2. Forsberg RA, Reeves DL. 1992. Breeding oat cultivars for improved grain quality. In Oat Science and Technology, Agronomy Monograph 33. Marshall HG, Sorrells ME, eds. American Society of Agronomy, Madison, WI, USA. p 751-775.
  3. Burnette D, Lenz M, Sisson PF, Sutherland S, Weaver SH. 1992. Marketing, processing and uses of oat for food. In Oat Science and Technology, Agronomy Monograph 33. Marshall HG, Sorrells ME, eds. American Society of Agronomy, Madison, WI, USA. p 247-263.
  4. Ma CY. 1983. Chemical characterization and functionality assessment of protein concentrates from oats. Cereal Chem 60: 36-42.
  5. Hischke Jr HH, Potter GC, Graham Jr WR. 1968. Nutritive value of oat protein. I. Varietal differences as measured by amino acid analysis and rat growth responses. Cereal Chem 45: 374-378.
  6. McMullen MS. 1991. Oats. In Handbook of Cereal Science and Technology. Marcel Dekker, New York, NY, USA. p 199-263.
  7. Cluskey JE, Wu YV, Wall JS, Inglett GE. 1973. Oat protein concentrates from a wet-milling process: preparation. Cereal Chem 50: 475-481.
  8. Hohner GA, Hyldon RG. 1977. Oat groat fractionation process. US Patent 4,028,468.
  9. Ma CY. 1983. Preparation, composition and functional properties of oat protein isolate. Can Inst Food Sci Technol J 15: 201-205.
  10. Guan X, Yao H. 2008. Optimization of L-assisted extraction of oat bran protein using response surface methodology. Food Chem 106: 345-351. https://doi.org/10.1016/j.foodchem.2007.05.041
  11. Liu J, Guan X, Zhu D, Sun J. 2008. Optimization of the enzymatic pretreatment in oat bran protein extraction by particle swarm optimization algorithms for response surface modeling. LWT-Food Sci Technol 41: 1913-1917. https://doi.org/10.1016/j.lwt.2008.02.013
  12. Jodayree SC, Smith J, Tsopmo A. 2012. Use of carbohydrase to enhance protein extraction efficiency and antioxidative properties of oat bran protein hydrolysates. Food Res Int 46: 69-75. https://doi.org/10.1016/j.foodres.2011.12.004
  13. Tang S, Hettiarachchy NS, Shellhammer TH. 2002. Protein extraction from heat-stabilized defatted rice bran: 1. Physical processing and enzyme treatment. J Agric Food Chem 50:7444-7448. https://doi.org/10.1021/jf025771w
  14. Ma CY, Haewalkar VR, Paquet A. 1990. Physicochemical properties of alkali-treated oat globulin. J Agric Food Chem 38: 1707-1711. https://doi.org/10.1021/jf00098a017
  15. Xu X, Skands ARH, Adler-Nissen J, Hoy CE. 1998. Production of specific structured lipids by enzymatic interesterification:optimization of the reaction by response surface design. Lipid/Fett 100: 463-471. https://doi.org/10.1002/(SICI)1521-4133(199810)100:10<463::AID-LIPI463>3.0.CO;2-6
  16. Lee YS, Ha JK, Lee ES. 2008. Optimization of peel adhesion of acrylic pressure sensitive adhesive using design of experiments. Journal of Adhesion and Interface 9: 22-27.
  17. Lee GD, Lee JE, Kwon JH. 2000. Application of response surface methodology in food industry. Food Science and Industry 33: 33-45.
  18. Bera MB, Mukherjee RK. 1789. Solubility, emulsifying, and foaming properties of rice bran protein concentrates. J Food Sci 54: 142-145.
  19. Lowry OH, Nida J, Rosebrough A, Lewisfarr R, Ranoall J. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
  20. AOAC. 1990. Official method of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 292.
  21. Shen L, Wang X, Wang Z, Wu Y, Chen J. 2008. Studies on tea protein extraction using alkaline and enzyme methods. Food Chem 107: 929-938. https://doi.org/10.1016/j.foodchem.2007.08.047
  22. Kinsella JE. 1976. Functional properties of proteins in food: a survey. CRC Crit Rev Food Sci Nutr 7: 219-280. https://doi.org/10.1080/10408397609527208
  23. Lee ES, Kim KJ, Kim JH, Hong ST. 2010. A study on the development of high functional food protein ingredient from rice bran. CNU Journal of Agricultural Science 37: 61-68.
  24. Lee MJ, Lee JH. 2007. Analysis of processing conditions on Maesil Kochujang production using response surface methodology. J Korean Soc Food Sci Nutr 36: 629-635. https://doi.org/10.3746/jkfn.2007.36.5.629

피인용 문헌

  1. Antioxidant and Anti-Proliferative Activities of Oats under Different Solvent Extraction Conditions vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.918
  2. Antioxidant Compounds and Activities of Methanolic Extracts from Oat Cultivars vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1660
  3. Optimization of a Medium for the Production of Cellulase by Bacillus subtilis NC1 Using Response Surface Methodology vol.25, pp.6, 2015, https://doi.org/10.5352/JLS.2015.25.6.680
  4. Identification of optimal filtration conditions for the management of eutrophic waters by freshwater mussels using response surface methodology pp.17476585, 2019, https://doi.org/10.1111/wej.12409
  5. 반응표면분석을 이용한 패류의 부영양수 유기물 제어능 연구 vol.47, pp.4, 2014, https://doi.org/10.11614/ksl.2014.47.4.312
  6. 국내외 시판 농산물 중간소재의 총페놀, 총플라보노이드, 총안토시아닌 함량 및 항산화 활성 vol.44, pp.3, 2016, https://doi.org/10.4014/mbl.1606.06003
  7. 반응 표면 분석법을 사용한 Rhodobacter sphaeroides PS-24 유래 carotenoid 생산 배지 최적화 vol.25, pp.1, 2017, https://doi.org/10.11625/kjoa.2017.25.1.135
  8. 국내 육성 쌀귀리 품종의 이화학 특성 및 베타글루칸 함량 vol.49, pp.1, 2014, https://doi.org/10.9721/kjfst.2017.49.1.97
  9. 노화가속화 조건에서 저장 기간에 따른 귀리의 기능성 성분 및 항산화 활성 변화 vol.63, pp.2, 2018, https://doi.org/10.7740/kjcs.2018.63.2.149
  10. 반응표면분석법을 이용한 쌀 단백질 초고압 추출조건 최적화 vol.34, pp.6, 2014, https://doi.org/10.7318/kjfc/2019.34.6.779
  11. Antioxidant and Antimicrobial Activity in Oat(Avena sativa L.) Leaf Extracts and Its Effect on the Characteristics of Emulsion Sausage vol.54, pp.2, 2014, https://doi.org/10.14397/jals.2020.54.2.83
  12. 대두와 귀리를 첨가하여 영양을 강화시킨 기능성 시니어 혼합 두유 개발에 관한 연구 vol.33, pp.2, 2020, https://doi.org/10.9799/ksfan.2020.33.2.194
  13. Functional Components and Antioxidant Activities by Temperature and Growing Days of Sprouted Oats vol.50, pp.11, 2014, https://doi.org/10.3746/jkfn.2021.50.11.1161
  14. Effects of Sargassum thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP-1 and MMPs vol.26, pp.23, 2014, https://doi.org/10.3390/molecules26237381