DOI QR코드

DOI QR Code

Synthesis, Characterization and Swelling Properties of Chitosan/Poly(acrylic acid-co-crotonic acid) Semi-Interpenetrating Polymer Networks

Chitosan/Poly(acrylic acid-co-crotonic acid) Semi-IPN의 합성, 분석 및 팽윤거동

  • Received : 2014.02.03
  • Accepted : 2014.04.05
  • Published : 2014.09.25

Abstract

A semi-interpenetrating polymer network (semi-IPN) hydrogel composed of crosslinked chitosan and poly (acrylic acid-co-crotonic acid) was prepared in the presence of glutaraldehyde (GA) as a crosslinker. Fourier-transform infrared, thermogravimetric analysis and scanning electron microscopy were employed to confirm the structure of the semi-IPN hydrogel. The swelling capacity of hydrogel was shown to be affected by the monomers weight ratio, chitosan content, initiator and GA concentrations. The results also indicated that the semi-IPN hydrogel had different swelling capacity at various pHs. Additionally, the swelling behavior of the hydrogel was investigated in aqueous solutions of NaCl, $CaCl_2$, and $AlCl_3$.

Keywords

References

  1. D. Klempner and L. H. Sperling, "Interpenetrating Polymer Networks", Advances in Chemistry Series No. 239, Washington DC, American Chemistry Society, 1994.
  2. S. C. Kim, Polymer(Korea), 10, 584 (1986).
  3. L. H. Sperling, Interpenetrating Polymer Networks and Related Materials, Plenum Press, New York, 1981.
  4. C. Plesse, F. Vidal, C. Gauthier, J. M. Pelletier, C. Chevrot, and D. Teyssie, Polymer, 48, 696 (2007). https://doi.org/10.1016/j.polymer.2006.11.053
  5. S. C. Kim, Polymer(Korea), 29, 1 (2005).
  6. C. Erbil, E. Kazancioglu, and N. Uyan k, Eur. Polym. J., 40, 1145 (2004). https://doi.org/10.1016/j.eurpolymj.2003.12.024
  7. D. L. Merlin and B. Sivasankar, Eur. Polym. J., 45, 165 (2009). https://doi.org/10.1016/j.eurpolymj.2008.10.012
  8. P. Chivukula and K. Dosek, Biomaterials, 27, 1140 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.020
  9. S. Simic, B. Dunjic, S. Tasic, B. Bozic, D. Jovanovic, and I. Popovic, Prog. Org. Coat., 63, 43 (2008). https://doi.org/10.1016/j.porgcoat.2008.04.006
  10. H. S. Shin, S. Y. Kim, K. H. Lee, S. J. Kim, and Y. M. Lee, Polymer(Korea), 22, 683 (1998).
  11. D. K. Pyun, Y. H. Lim, J. H. An, D. Kim, and D. S. Lee, Polymer(Korea), 20, 335 (1996).
  12. Y. Zhou, D. Yang, X. Gao, X. Chen, Q. Xu, F. Lu, and J. Nie, Carbohyd. Polym., 75, 293 (2009). https://doi.org/10.1016/j.carbpol.2008.07.024
  13. D. K. Singh and A. R. Ray, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C40, 69 (2000).
  14. G. A. F. Roberts, Chitin Chemistry, Macmillan Press Ltd., London, 1992.
  15. F. L. Mi, C. Y. Kuan, S. S. Shyu, S. T. Lee, and S. F. Chang, Carbohydr. Polym., 41 389 (2000). https://doi.org/10.1016/S0144-8617(99)00104-6
  16. Z. S. Liu and G. L. Rempel, J. Appl. Polym. Sci., 64, 1345 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970516)64:7<1345::AID-APP14>3.0.CO;2-W
  17. F. L. Mi, S. S. Shyu, T. B. Wong, F. S. Jang, S. T. Lee, and K. T. Lu, J. Appl. Polym. Sci., 74, 1093 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991031)74:5<1093::AID-APP6>3.0.CO;2-C
  18. F. L. Mi, Y. C. Tan, H. F. Liang, and H. W. Sung, Biomaterials, 23, 181 (2002). https://doi.org/10.1016/S0142-9612(01)00094-1
  19. S. S. Lim and S. M. Hudson, Carbohydr. Res., 339, 313 (2004). https://doi.org/10.1016/j.carres.2003.10.024
  20. L. Y. Zheng and J. F. Zhu, Carbohydr. Polym., 54, 527 (2003). https://doi.org/10.1016/j.carbpol.2003.07.009
  21. C. J. Knill, J. F. Kennedy, J. Mistry, M. Miraftab, G. Smart, and M. R. Groocock, Carbohydr. Polym., 55, 65 (2004). https://doi.org/10.1016/j.carbpol.2003.08.004
  22. K. Aiedeh, E. Gianasi, I. Orienti, and V. Zecchi, J. Microencapsul., 14, 567 (1997). https://doi.org/10.3109/02652049709006810
  23. J. Berger, M. Reist, J. M. Mayer, O. Felt, and R. Gurny, Eur. J. Pharm. Biopharm., 57, 35 (2004). https://doi.org/10.1016/S0939-6411(03)00160-7
  24. K. Yagi, N. Michibayashi, N. Kurikawa, Y. Nakashima, T. Mizoguchi, and A. Harada, Biol. Pharm. Bull., 20, 1290 (1997). https://doi.org/10.1248/bpb.20.1290
  25. Y. Zhang and M. Zhang, J. Biomed. Mater. Res., 55, 304 (2001). https://doi.org/10.1002/1097-4636(20010605)55:3<304::AID-JBM1018>3.0.CO;2-J
  26. H. Hosseinzadeh, J. Chem. Sci., 122, 651 (2010). https://doi.org/10.1007/s12039-010-0100-1
  27. S. Hua and A. Wang, Carbohydr. Polym., 75, 79 (2009). https://doi.org/10.1016/j.carbpol.2008.06.013
  28. Y. Chen, Y. F. Liu, H. M. Tan, and J. X. Jiang, Carbohyd. Polym., 75, 287 (2009). https://doi.org/10.1016/j.carbpol.2008.07.022
  29. M. H. Lee, S. J. Kim, and S. N. Park, Polymer(Korea), 37, 347 (2013).
  30. I. S. Han, Y. M. Lim, H. J. Gwon, J. S. Park, and Y. C. Nho, Polymer(Korea), 35, 13 (2011).
  31. W. Wu and D. Wang, React. Funct. Polym., 70, 684 (2010). https://doi.org/10.1016/j.reactfunctpolym.2010.06.002
  32. H. J. Kim, M. Kim, and H. Noh, Polymer(Korea), 38, 220 (2014).
  33. J. Kim, C. M. Lee, D. W. Kim, and K. Y. Lee, Polymer(Korea), 37, 802 (2013).
  34. J. Yang and B. Kim, Polymer(Korea), 37, 262 (2013).
  35. H. Y. Zhou, Y. P. Zhang, W. F. Zhang, and X. G. Chen, Carbohyd. Polym., 83, 1643 (2011). https://doi.org/10.1016/j.carbpol.2010.10.022
  36. S. H. Hua, H. Xia, and W. Wang, Appl. Clay Sci., 50, 112 (2010). https://doi.org/10.1016/j.clay.2010.07.012
  37. Y. L. Guan, L. S. Shao, J. L. Liu, and K. D. Yao, J. Appl. Polym. Sci., 62, 1253 (1996). https://doi.org/10.1002/(SICI)1097-4628(19961121)62:8<1253::AID-APP15>3.0.CO;2-8
  38. H. Wang, W. Li, Y. Lu, and Z. Wang, J. Appl. Polym. Sci., 65, 1445 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970822)65:8<1445::AID-APP1>3.0.CO;2-G
  39. S. J. Lee, S. S. Kim, and Y. M. Lee, Carbohyd. Polym., 41, 197 (2000). https://doi.org/10.1016/S0144-8617(99)00088-0
  40. W. F. Lee and Y. J. Chen, J. Appl. Polym. Sci., 82, 2487 (2001). https://doi.org/10.1002/app.2099
  41. J. Chen and Y. Zhao, J. Appl. Polym. Sci., 75, 808 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000207)75:6<808::AID-APP10>3.0.CO;2-3
  42. G. Odian, Principles of Polymerization, 2nd Ed., Wiley, New York, Chap. 3 (1981).
  43. J. Kost, Encyclopedia of Controlled Drug Delivery, E. Mathiowitz, Editor, Wiley, New York, Vol 1, p. 445 (1999).
  44. S. J. Lee, S. S. Kim, and Y. M. Lee, Carbohyd. Polym., 41, 197 (2000). https://doi.org/10.1016/S0144-8617(99)00088-0
  45. Y. Zhou, D. Yang, X. Gao, X. Chen, Q. Xu, F. Lu, and J. Nie, Carbohyd. Polym., 75, 293 (2009). https://doi.org/10.1016/j.carbpol.2008.07.024
  46. S. J. Kim, S. J. Park, and S. I. Kim, React. Funct. Polym., 55, 53 (2003). https://doi.org/10.1016/S1381-5148(02)00214-6
  47. M. N. Khalida, F. Agnelya, N. Yagoubib, J. L. Grossiorda, and G. Couarrazea, Eur. J. Pharm. Sci., 15, 425 (2002). https://doi.org/10.1016/S0928-0987(02)00029-5
  48. M. Gumus, D. Erce, and T. T. Demirtas, J. Mater. Sci.: Mater. Med., 22, 2467 (2011). https://doi.org/10.1007/s10856-011-4422-4
  49. S. Saber-Samandari, M. Gazi, and E. Yilmaz, Polym. Bull., 68, 1623 (2012). https://doi.org/10.1007/s00289-011-0643-4
  50. S. P. Zhao, L. Y. Li, M. J. Cao, and W. L. Xu, Polym. Bull., 66, 1075 (2011). https://doi.org/10.1007/s00289-010-0390-y
  51. B. Guo, J. Yuan, and Q. Gao, Colloid Polym. Sci., 286, 175 (2008). https://doi.org/10.1007/s00396-007-1749-y
  52. S. Jockusch, N. J. Turro, Y. Mitsukami, M. Matsumoto, T. Iwamura, T. Lindner, A. Flohr, and G. Massimo, J. Appl. Polym. Sci., 111, 2163 (2009). https://doi.org/10.1002/app.29209
  53. J. Xie, X. Liu, J. Liang, and Y. Luo, J. Appl. Polym. Sci., 112, 602 (2009). https://doi.org/10.1002/app.29463
  54. H. Hosseinzadeh, A. Pourjavadi, and G. R. Mahdavinia, J. Polym. Mater., 23, 61 (2006).