DOI QR코드

DOI QR Code

NADPH Oxidase and the Cardiovascular Toxicity Associated with Smoking

  • Kim, Mikyung (College of Pharmacy, Dongguk University) ;
  • Han, Chang-Ho (Research Institute of Oriental Medicine, College of Korean Medicine, Dongguk University) ;
  • Lee, Moo-Yeol (College of Pharmacy, Dongguk University)
  • 투고 : 2014.09.12
  • 심사 : 2014.09.25
  • 발행 : 2014.09.30

초록

Smoking is one of the most serious but preventable causes of cardiovascular disease (CVD). Key aspects of pathological process associated with smoking include endothelial dysfunction, a prothrombotic state, inflammation, altered lipid metabolism, and hypoxia. Multiple molecular events are involved in smoking-induced CVD. However, the dysregulations of reactive oxygen species (ROS) generation and metabolism mainly contribute to the development of diverse CVDs, and NADPH oxidase (NOX) has been established as a source of ROS responsible for the pathogenesis of CVD. NOX activation and resultant ROS production by cigarette smoke (CS) treatment have been widely observed in isolated blood vessels and cultured vascular cells, including endothelial and smooth muscle cells. NOX-mediated oxidative stress has also been demonstrated in animal studies. Of the various NOX isoforms, NOX2 has been reported to mediate ROS generation by CS, but other isoforms were not tested thoroughly. Of the many CS constituents, nicotine, methyl vinyl ketone, and ${\alpha}$,${\beta}$-unsaturated aldehydes, such as, acrolein and crotonaldehyde, appear to be primarily responsible for NOX-mediated cytotoxicity, but additional validation will be needed. Human epidemiological studies have reported relationships between polymorphisms in the CYBA gene encoding p22phox, a catalytic subunit of NOX and susceptibility to smoking-related CVDs. In particular, G allele carriers of A640G and $-930^{A/G}$ polymorphisms were found to be vulnerable to smoking-induced cardiovascular toxicity, but results for C242T studies are conflicting. On the whole, evidence implicates the etiological role of NOX in smoking-induced CVD, but the clinical relevance of NOX activation by smoking and its contribution to CVD require further validation in human studies. A detailed understanding of the role of NOX would be helpful to assess the risk of smoking to human health, to define high-risk subgroups, and to develop strategies to prevent or treat smoking-induced CVD.

키워드

참고문헌

  1. White, W.B. (2007) Smoking-related morbidity and mortality in the cardiovascular setting. Prev. Cardiol., 10, 1-4. https://doi.org/10.1111/j.1520-037X.2007.06050.x
  2. Ezzati, M., Henley, S.J., Thun, M.J. and Lopez, A.D. (2005) Role of smoking in global and regional cardiovascular mortality. Circulation, 112, 489-497. https://doi.org/10.1161/CIRCULATIONAHA.104.521708
  3. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. (2014) 2014 Surgeon General's Report: The Health Consequences of Smoking-50 Years of Progres. (Online). Available: http://www.surgeongeneral.gov/library/reports/50-years-of-progress/full-report.pdf (Aug. 10, 2014).
  4. Zheng, W., McLerran, D.F., Rolland, B.A., Fu, Z., Boffetta, P., He, J., Gupta, P.C., Ramadas, K., Tsugane, S., Irie, F., Tamakoshi, A., Gao, Y.T., Koh, W.P., Shu, X.O., Ozasa, K., Nishino, Y., Tsuji, I., Tanaka, H., Chen, C.J., Yuan, J.M., Ahn, Y.O., Yoo, K.Y., Ahsan, H., Pan, W.H., Qiao, Y.L., Gu, D., Pednekar, M.S., Sauvaget, C., Sawada, N., Sairenchi, T., Yang, G., Wang, R., Xiang, Y.B., Ohishi, W., Kakizaki, M., Watanabe, T., Oze, I., You, S.L., Sugawara, Y., Butler, L.M., Kim, D.H., Park, S.K., Parvez, F., Chuang, S.Y., Fan, J.H., Shen, C.Y., Ghen, Y., Grant, E.J., Lee, J.E., Sinha, R., Matsuo, K., Thomguist, M., Inoue, M., Feng, Z., Kang, D. and Patter, J.D. (2014) Burden of total and cause-specific mortality related to tobacco smoking among adults aged ${\geq}45$ years in Asia: a pooled analysis of 21 cohorts. PLoS Med., 11, e1001631. https://doi.org/10.1371/journal.pmed.1001631
  5. De Rosa, S., Pacileo, M., Sasso, L., Di Palma, V., Maietta, P., Paglia, A., Brevetti, L., Cirillo, P. and Chiariello, M. (2008) Insights into pathophysiology of smoke-related cardiovascular disease. Monaldi Arch. Chest Dis., 70, 59-67.
  6. Orosz, Z., Csiszar, A., Labinskyy, N., Smith, K., Kaminski, P.M., Ferdinandy, P., Wolin, M.S., Rivera, A. and Ungvari, Z. (2007) Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype: role of NAD(P)H oxidase activation. Am. J. Physiol. Heart Circ. Physiol., 292, H130-139. https://doi.org/10.1152/ajpheart.00599.2006
  7. Jiang, F., Zhang, Y. and Dusting, G.J. (2011) NADPH oxidasemediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol. Rev., 63, 218-242. https://doi.org/10.1124/pr.110.002980
  8. Bedard, K. and Krause, K.H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 87, 245-313. https://doi.org/10.1152/physrev.00044.2005
  9. Cave, A., Grieve, D., Johar, S., Zhang, M. and Shah, A.M. (2005) NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology. Philos. Trans. R. Soc. Lond B Biol. Sci., 360, 2327-2334. https://doi.org/10.1098/rstb.2005.1772
  10. Lassegue, B., San Martin, A. and Griendling, K.K. (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res., 110, 1364-1390. https://doi.org/10.1161/CIRCRESAHA.111.243972
  11. Jaimes, E.A., DeMaster, E.G., Tian, R.X. and Raij, L. (2004) Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arterioscler. Thromb. Vasc. Biol., 24, 1031-1036. https://doi.org/10.1161/01.ATV.0000127083.88549.58
  12. Haddad, P., Dussault, S., Groleau, J., Turgeon, J., Michaud, S.E., Menard, C., Perez, G., Maingrette, F. and Rivard, A. (2009) Nox2-containing NADPH oxidase deficiency confers protection from hindlimb ischemia in conditions of increased oxidative stress. Arterioscler. Thromb. Vasc. Biol., 29, 1522-1528. https://doi.org/10.1161/ATVBAHA.109.191437
  13. Steffen, Y., Vuillaume, G., Stolle, K., Roewer, K., Lietz, M., Schueller, J., Lebrun, S. and Wallerath, T. (2012) Cigarette smoke and LDL cooperate in reducing nitric oxide bioavailability in endothelial cells via effects on both eNOS and NADPH oxidase. Nitric Oxide, 27, 176-184. https://doi.org/10.1016/j.niox.2012.06.006
  14. Hotston, M.R., Jeremy, J.Y., Bloor, J., Koupparis, A., Persad, R. and Shukla, N. (2007) Sildenafil inhibits the up-regulation of phosphodiesterase type 5 elicited with nicotine and tumour necrosis factor-alpha in cavernosal vascular smooth muscle cells: mediation by superoxide. BJU Int., 99, 612-618. https://doi.org/10.1111/j.1464-410X.2006.06618.x
  15. Barbieri, S.S., Zacchi, E., Amadio, P., Gianellini, S., Mussoni, L., Weksler, B.B. and Tremoli, E. (2011) Cytokines present in smokers' serum interact with smoke components to enhance endothelial dysfunction. Cardiovasc. Res., 90, 475-483. https://doi.org/10.1093/cvr/cvr032
  16. Barbieri, S.S., Amadio, P., Gianellini, S., Zacchi, E., Weksler, B.B. and Tremoli, E. (2011) Tobacco smoke regulates the expression and activity of microsomal prostaglandin E synthase-1: role of prostacyclin and NADPH-oxidase. FASEB J., 25, 3731-3740. https://doi.org/10.1096/fj.11-181776
  17. Noya, Y., Seki, K., Asano, H., Mai, Y., Horinouchi, T., Higashi, T., Terada, K., Hatate, C., Hoshi, A., Nepal, P., Horiguchi, M., Kuge, Y. and Miwa, S. (2013) Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity. Toxicology, 314, 1-10. https://doi.org/10.1016/j.tox.2013.08.015
  18. Pei, Z., Zhuang, Z., Sang, H., Wu, Z., Meng, R., He, E.Y., Scott, G.I., Maris, J.R., Li, R. and Ren, J. (2014) alpha,beta-Unsaturated aldehyde crotonaldehyde triggers cardiomyocyte contractile dysfunction: role of TRPV1 and mitochondrial function. Pharmacol. Res., 82, 40-50. https://doi.org/10.1016/j.phrs.2014.03.010
  19. Messner, B. and Bernhard, D. (2014) Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler. Thromb. Vasc. Biol., 34, 509-515. https://doi.org/10.1161/ATVBAHA.113.300156
  20. Rafacho, B.P., Azevedo, P.S., Polegato, B.F., Fernandes, A.A., Bertoline, M.A., Fernandes, D.C., Chiuso-Minicucci, F., Roscani, M.G., Dos Santos, P.P., Matsubara, L.S. Matsubara, B.B., Laurindo, F.R., Paiva, S.A., Zornoff, L.A. and Minicucci, M.F. (2011) Tobacco smoke induces ventricular remodeling associated with an increase in NADPH oxidase activity. Cell. Physiol. Biochem., 27, 305-312. https://doi.org/10.1159/000327957
  21. Xiao, D., Huang, X., Yang, S. and Zhang, L. (2011) Antenatal nicotine induces heightened oxidative stress and vascular dysfunction in rat offspring. Br. J. Pharmacol., 164, 1400-1409. https://doi.org/10.1111/j.1476-5381.2011.01437.x
  22. Loffredo, L., Carnevale, R., Perri, L., Catasca, E., Augelletti, T., Cangemi, R., Albanese, F., Piccheri, C., Nocella, C., Pignatelli, P. and Violi, F. (2011) NOX2-mediated arterial dysfunction in smokers: acute effect of dark chocolate. Heart, 97, 1776-1781. https://doi.org/10.1136/heartjnl-2011-300304
  23. Carnevale, R., Loffredo, L., Pignatelli, P., Nocella, C., Bartimoccia, S., Di Santo, S., Martino, F., Catasca, E., Perri, L. and Violi, F. (2012) Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers. J. Thromb. Haemostasis, 10, 125-132. https://doi.org/10.1111/j.1538-7836.2011.04558.x
  24. Barua, R.S. and Ambrose, J.A. (2013) Mechanisms of coronary thrombosis in cigarette smoke exposure. Arterioscler. Thromb. Vasc. Biol., 33, 1460-1467. https://doi.org/10.1161/ATVBAHA.112.300154
  25. Breitling, L.P. (2013) Current genetics and epigenetics of smoking/tobacco-related cardiovascular disease. Arterioscler. Thromb. Vasc. Biol., 33, 1468-1472. https://doi.org/10.1161/ATVBAHA.112.300157
  26. San Jose, G., Fortuno, A., Beloqui, O., Diez, J. and Zalba, G. (2008) NADPH oxidase CYBA polymorphisms, oxidative stress and cardiovascular diseases. Clin. Sci. (Lond), 114, 173-182. https://doi.org/10.1042/CS20070130
  27. Niemiec, P., Nowak, T., Balcerzyk, A., Krauze, J. and Zak, I. (2011) The CYBA gene A640G polymorphism influences predispositions to coronary artery disease through interactions with cigarette smoking and hypercholesterolemia. Biomarkers, 16, 405-412. https://doi.org/10.3109/1354750X.2011.580368
  28. Niemiec, P., Nowak, T., Iwanicki, T., Krauze, J., Gorczynska-Kosiorz, S., Grzeszczak, W., Ochalska-Tyka, A. and Zak, I. (2014) The -930A>G polymorphism of the CYBA gene is associated with premature coronary artery disease. A casecontrol study and gene-risk factors interactions. Mol. Biol. Rep., 41, 3287-3294. https://doi.org/10.1007/s11033-014-3191-9
  29. Fan, M., Raitakari, O.T., Kahonen, M., Juonala, M., Hutri-Kahonen, N., Porsti, I., Viikari, J. and Lehtimaki, T. (2009) The association between cigarette smoking and carotid intimamedia thickness is influenced by the -930A/G CYBA gene polymorphism: the Cardiovascular Risk in Young Finns Study. Am. J. Hypertens., 22, 281-287. https://doi.org/10.1038/ajh.2008.349
  30. Raitakari, O.T. (1999) Imaging of subclinical atherosclerosis in children and young adults. Ann. Med., 31 Suppl 1, 33-40. https://doi.org/10.1080/07853890.1999.11904397
  31. Fan, M., Raitakari, O.T., Kahonen, M., Juonala, M., Hutri-Kahonen, N., Marniemi, J., Rontu, R., Porsti, I., Viikari, J. and Lehtimaki, T. (2007) CYBA C242T gene polymorphism and flow-mediated vasodilation in a population of young adults: the Cardiovascular Risk in Young Finns Study. J. Hypertens., 25, 1381-1387. https://doi.org/10.1097/HJH.0b013e32810bfe58
  32. Ge, J., Ding, Z., Song, Y. and Wang, F. (2012) Smoking dose modifies the association between C242T polymorphism and prevalence of metabolic syndrome in a Chinese population. PLoS One, 7, e31926. https://doi.org/10.1371/journal.pone.0031926
  33. He, M.A., Cheng, L.X., Jiang, C.Z., Zeng, H.S., Wang, J., Wang, F., Chen, Y., Yang, M., Tan, H., Zheng, H.Y., Hu, F.B. and Wu, T.C. (2007) Associations of polymorphism of P22(phox) C242T, plasma levels of vitamin E, and smoking with coronary heart disease in China. Am. Heart J., 153, 640e1-6. https://doi.org/10.1016/j.ahj.2007.01.002
  34. Ueno, T., Watanabe, H., Fukuda, N., Tsunemi, A., Tahira, K., Matsumoto, T., Takayama, T., Chiku, M., Saito, S., Sato, Y. Hirayama, A., Matsumoto, K. and Soma, M. (2009) Influence of genetic polymorphisms in oxidative stress related genes and smoking on plasma MDA-LDL, soluble CD40 ligand, Eselectin and soluble ICAM1 levels in patients with coronary artery disease. Med. Sci. Monit., 15, CR341-348.
  35. Niemiec, P., Zak, I. and Wita, K. (2007) The 242T variant of the CYBA gene polymorphism increases the risk of coronary artery disease associated with cigarette smoking and hypercholesterolemia. Coron. Artery Dis., 18, 339-346. https://doi.org/10.1097/MCA.0b013e328241d97a
  36. Xiao, D., Huang, X., Yang, S. and Zhang, L. (2013) Estrogen normalizes perinatal nicotine-induced hypertensive responses in adult female rat offspring. Hypertension, 61, 1246-1254. https://doi.org/10.1161/HYPERTENSIONAHA.113.01152
  37. Drummond, G.R., Selemidis, S., Griendling, K.K. and Sobey, C.G. (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discovery, 10, 453-471. https://doi.org/10.1038/nrd3403

피인용 문헌

  1. Plasma total antioxidant capacity and peroxidation biomarkers in psoriasis vol.23, pp.1, 2016, https://doi.org/10.1186/s12929-016-0268-x
  2. A single dose of dark chocolate increases parasympathetic modulation and heart rate variability in healthy subjects vol.29, pp.6, 2016, https://doi.org/10.1590/1678-98652016000600002
  3. Maternal Nicotine Exposure During Late Gestation and Lactation Increases Anxiety-Like and Impulsive Decision-Making Behavior in Adolescent Offspring of Rat vol.32, pp.4, 2016, https://doi.org/10.5487/TR.2016.32.4.275
  4. Differential Effects between Cigarette Total Particulate Matter and Cigarette Smoke Extract on Blood and Blood Vessel vol.32, pp.4, 2016, https://doi.org/10.5487/TR.2016.32.4.353
  5. Mass Spectrometric Approaches to the Identification of Potential Ingredients in Cigarette Smoke Causing Cytotoxicity vol.39, pp.6, 2016, https://doi.org/10.1248/bpb.b16-00032
  6. CML/RAGE signal induces calcification cascade in diabetes vol.8, pp.1, 2016, https://doi.org/10.1186/s13098-016-0196-7
  7. The Role of Nrf2 in Cardiovascular Function and Disease vol.2017, pp.1942-0994, 2017, https://doi.org/10.1155/2017/9237263
  8. Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs vol.25, pp.3, 2017, https://doi.org/10.4062/biomolther.2016.138
  9. The effect of tobacco smoke exposure on the generation of reactive oxygen species and cellular membrane damage using co-culture model of blood brain barrier with astrocytes vol.33, pp.6, 2017, https://doi.org/10.1177/0748233716687708
  10. knock-out mice vol.95, pp.4, 2017, https://doi.org/10.1139/bcb-2016-0198
  11. Cardiac Arrest vol.116, pp.12, 2015, https://doi.org/10.1161/CIRCRESAHA.116.304495
  12. Chronic nicotine exposure exacerbates transient focal cerebral ischemia-induced brain injury vol.120, pp.3, 2016, https://doi.org/10.1152/japplphysiol.00663.2015
  13. Elevated pentose phosphate pathway is involved in the recovery of hypoxia-induced erythrocytosis vol.16, pp.6, 2017, https://doi.org/10.3892/mmr.2017.7801
  14. Hazelnut and cocoa spread improves flow-mediated dilatation in smokers pp.1970-9366, 2018, https://doi.org/10.1007/s11739-018-1913-z