References
- Alexander, L.E. 1969. X-ray diffraction in polymer science. Wiley-Interscience, Amsterdam. pp. 423-424.
- Clair, B., Almeras T., Sugiyama, J. 2006. Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar. Ann For Sci 63: 507-510. https://doi.org/10.1051/forest:2006032
- Clair, B., Ruelle, J., Beauchene, J., Prevost, M.F., Fournier, M.. 2006. Tension wood and opposite wood in 21 tropical rainforest species about the presence of G-layer. IAWA J 27: 329-338.
- Dadswell, H.E., Wardrop, A.B. 1949. What is reaction wood? Aust For 13: 22-33. https://doi.org/10.1080/00049158.1949.10675761
- Dadswell, H.E., Wardrop, A.B. 1955. The structure and properties of tension wood. Holzforschung 9: 97-104. https://doi.org/10.1515/hfsg.1955.9.4.97
- Fisher, J.B., Stevenson, J.W. 1981. Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot Gaz 142: 82-95. https://doi.org/10.1086/337199
- IAWA Committee. 1989. IAWA List of microscopic features for hardwood identification. IAWA Bulletin n.s. 10(3): 219-332. https://doi.org/10.1163/22941932-90000496
- Jourez, B., Riboux, A., Leclercq, A. 2001. Anatomical characteristics of tension wood and opposite wood in young inclined stem of Poplar (Populus euramericana cv 'Ghjoy'). IAWA J 22: 133-157. https://doi.org/10.1163/22941932-90000274
- Jeong, S.H., Park, B.S. 2008. Wood properties of the useful tree species grown in Korea. Korea Forest Research Institute 29: 348-368.
- Korean standards association. 2004. KS F 2198, KS F 2203, KS F 2206 and KS F 2209.
- Kwon M. 2008. Tension wood as a model system to explore to carbon partitioning between lignin and cellulose biosynthesis in woody plants. Journal of Applied Biological Chemistry 51(3): 83-87. https://doi.org/10.3839/jabc.2008.018
- Lee, W.Y., Kim, N.H. 1993. Crystal structure of tension wood by x-ray diffraction method. Journal of Korean Wood Science and Technology 21(4): 65-73.
- Lee, S.W., Hwang, W.J., Kim, N.H. 1997. Some anatomical characteristics in tension and opposite woods of Quercus mongolica Fischer. Journal of Korean Wood Science and Technology 25(3): 43-49.
- Lillie, R.D. 1977. Conn's Biological Stains. Williams and Wilkins Co., Baltimore.
- Lautner, S., Zollfrank, C., Fromm, J. 2012. Microfibril angle distribution of poplar tension wood. IAWA J 33: 431-439. https://doi.org/10.1163/22941932-90000105
- Muller, M., Burghammer, M., Sugiyama, J. 2006. Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60: 474-479.
- Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29: 786-794. https://doi.org/10.1177/004051755902901003
- Pramod, S., Rao, S.K., Sundberg, A. 2013. Structural, histochemical and chemical characterization of normal, tension and opposite wood of Subabul (Leucaena leucocephala (lam.) De wit.). Wood Science Technology 47: 777-796. https://doi.org/10.1007/s00226-013-0528-9
- Timell, T.E. 1986. Compression wood in gymnosperms. Springer, Heidelberg.
- Tsoumis, G.T. 1991. Science and technology of wood. Van Nostrand Reinhold, New York, 111-160.
- Von Aufsess, B.H. 1973. Microscopic scope of lignification by staining methods. Holz Roh Werkst 31: 24-33. https://doi.org/10.1007/BF02608218
- Wardrop, A.B. 1964. The reaction anatomy of arborescent angiosperms. Academic press, New York London, 405-456.
Cited by
- Carbonization of reaction wood from Paulownia tomentosa and Pinus densiflora branch woods vol.50, pp.5, 2016, https://doi.org/10.1007/s00226-016-0828-y
- Anatomical Characteristics of Paulownia tomentosa Root Wood vol.44, pp.2, 2016, https://doi.org/10.5658/WOOD.2016.44.2.157