
J. Chosun Natural Sci.

Vol. 7, No. 3 (2014) pp. 193 − 199

http://dx.doi.org/10.13160/ricns.2014.7.3.193

− 193 −

Parameter Estimation and Comparison for SRGMs and

ARIMA Model in Software Failure Data

Kwang Yoon Song, In Hong Chang†, and Dong Su Lee

Abstract

As the requirement on the quality of the system has increased, the reliability is very important part in terms of enhance

stability and to provide high quality services to customers. Many statistical models have been developed in the past years

for the estimation of software reliability. We consider the functions for NHPP software reliability model and time series

model in software failure data. We estimate parameters for the proposed models from three data sets. The values of SSE

and MSE is presented from three data sets. We compare the predicted number of faults with the actual three data sets

using the NHPP software reliability model and time series model.

Key words: ARIMA, Mean Squared Error, Software Reliability, Time Series

1. Introduction

The software is evolving the solution of the immedi-

ate problems in a variety of industries and offering the

convenience of the customer to satisfy the requirements

continue. As the requirement on the quality of the sys-

tem has increased, the reliability is very important part

in terms of enhance stability and to provide high quality

services to customers. So the software is plying an ever

increasing role in our day today life. Most of the prod-

ucts and services we consume are now based on soft-

ware or uses software in certain ways[1]. The link

between complexity and software faults have been sug-

gested for long, studies as early as 1980s such as Lew

et al.[2] suggest that software complexity often affects its

reliability. Thus while it is important to keep the com-

plexity of software under check, it is also important to

tack and monitor their reliability growth. The software

testing is still the main source of ensuring reliability and

quality of software systems. Software reliability growth

models have been used to estimate the reliability change

in software products and use the reliability growth pre-

dictions for making testing resource allocation deci-

sions. Since the software can rarely be made fully error

free, project managers need to balance costs associated

with software testing to cost of fixing bugs after

release[3]. Software reliability can be modelled using

reliability models which can be based on non-homoge-

neous Poisson process(NHPP). Research activities in

software reliability engineering have been conducted

over the past 40 years, and many statistical models have

been developed for the estimation of software reliability.

Software reliability is a measure of how closely user

requirements are met by a software system in actual

operation. Most existing models for quantifying soft-

ware reliability are based purely upon observation of

failures during the system test of the software prod-

uct[4-7]. The remarkable achievement in NHPP based on

software reliability growth models(SRGMs) was made

by Goel and Okumoto[4]. The model describes the fail-

ure observation phenomenon by an exponential curve.

There are also SRGMs that describe either S-shaped

curves, or a mixture of exponential and S-shaped curves

(flexible). Goel and Okumoto[4] presented a stochastic

model for the software failure phenomenon based on a

NHPP. Yamada et al.[7] presented two software reliabil-

ity assessment models with imperfect debugging by

assuming that new faults are sometimes introduced

when the faults originally latent in a software system are

corrected and removed during the testing phase. It is

assumed that the fault detection rate is proportional to

Department of Computer Science and Statistics, Chosun University,
Gwangju, Korea

†Corresponding author : ihchang@chosun.ac.kr
(Received : August 12, 2014, Revised : September 1, 2014,
Accepted : September 25, 2014)

J. Chosun Natural Sci., Vol. 7, No. 3, 2014

194 Kwang Yoon Song, In Hong Chang, and Dong Su Lee

the sum of the numbers of faults remaining originally

in the system and faults introduced by imperfect debug-

ging. Pham and Zhang[6] proposed software reliability

models based on a NHPP are summarized. They proved

that all models are applied to two widely used data sets.

It can be shown that for the failure data used here, the

new model fits and predicts much better than the exist-

ing models. In recent, Song and Chang[8] deal with soft-

ware reliability model and time series regression model.

This paper is organized as follows: In Section 2, we

propose the functions for NHPP software reliability

model, autoregressive moving average model ARMA

(p, q) and autoregressive integrated moving average

model ARIMA(p, d, q). In Section 3, the mean square

error as goodness-of-fit criteria is presented for model

estimation from actual data. We also present parameter

estimates and predictive values for the proposed models

from tree actual data sets. And we compare the pre-

dicted number of faults with the actual three data sets

using the proposed models. Section 4 presents conclu-

sions in this paper.

2. Models

In this section, we consider the NHPP software reli-

ability model and time series ARMA and ARIMA mod-

els.

2.1. NHPP Software Reliability Model

2.1.1. Goel-Okumoto Model

The Goel-Okumoto model[4] is based on the follow-

ing assumptions; 1. All faults in a program are mutually

independent from the failure detection point of view. 2.

The number of failures detected at any time is propor-

tional to the current number of faults in a program. This

means that the probability of the failures for faults actu-

ally occurring, i. e., detected, is constant. 3. The isolated

faults are removed prior to future test occasions. 4. Each

time a software failure occurs, the software error which

caused it is immediately removed, and no new errors

are introduced.

The mean value function is given by

(1)

where a is the expected total number of faults that exist

in the software before testing and b is the failure detec-

tion rate or the failure intensity of a fault.

2.1.2. Imperfect Debugging Model

The NHPP imperfect debugging model[7] is based on

the following assumptions; 1. When detected errors are

removed, it is possible to introduce new errors. 2. The

probability of finding an error in a program is propor-

tional to the number of remaining errors in the program.

The mean value function is given by

(2)

where the initial condition m(0)=0, a(t)=a(1+αt) is

defined as the error content function of time t during

software testing and b(t)=b is a constant error detection

rate.

2.1.3. Pham-Zhang Model

The model[5] assumes that; 1. The error introduction

rate is an exponential function of the testing time. In

other words, the number of errors increases quicker at

the beginning of the testing process than at the end. This

reflects the fact that more errors are introduced into the

software at the beginning, while at the end testers pos-

sess more knowledge and therefore introduce fewer

errors into the program. 2. The error detection rate func-

tion is non-decreasing with an inflection S-shaped

model.

Assume the time-dependent fault content function

and error detection rate are, respectively, a(t) = c+a(1−

e−αt), , m(0) = 0.

Then the mean value function is given by

(3)

2.2. Time Series Model

Now, we consider the time series models. A time

series {Zt, t = 0, ±1, ±2,...} is autoregressive moving

average ARMA(p, q). If it is stationary and

(4)

with and . The parameters p and q

are called the autoregressive and the moving average

orders. at, t = 0, ±1, ±2,..., is a Gaussian white noise

sequence. When q=0, the model is called an autoregres-

sive model of order p, AR(p), and when p=0, the model

m t() a 1 e
bt–

–()=

m t() a 1 αt+() 1
α

b
---–⎝ ⎠

⎛ ⎞ αat+=

b t() b

a βe
bt–

+

------------------=

m t()
c a+() 1 e

bt–
–[] a

b α–
---------- e

αt–
e

bt–
–()–⎝ ⎠

⎛ ⎞

1 βe
bt–

+

---=

Zt ∅1Zt 1– … ∅pZt p– at θ1at 1– … θqat q–+ + + + + +=

∅p 0 θq 0≠,≠ σt
2

0>

J. Chosun Natural Sci., Vol. 7, No. 3, 2014

Parameter Estimation and Comparison for SRGMs and ARIMA Model in Software Failure Data 195

is called a moving average model of order q, MA(q)[9].

The homogeneous non-stationary model has been

referred to as the autoregressive integrated moving aver-

age model of order (p, d, q) and is denoted as the

ARIMA(p, d, q);

(5)

When p=0, the ARIMA(p, d, q) model is also called

the integrated moving average model of order (d, q) and

is denoted as the IMA(d, q) model. When d=0, the orig-

inal process is stationary and we recall the general sta-

tionary ARMA(p, q) process in (4)[10].

3. Numerical Examples and Results

3.1. Software Failure Data

The Data set 1, given in Table 2, was reported by

Musa[11] based on failure data from a Real-Time Com-

mand and Control System(RTC&CS). There are in total

136 faults reported and the time-between failures in sec-

ond are listed. The Data set 1 represents the failures

observed during system testing for 25 hours of CPU

time. The delivered number of object instructions for

this system was 21700 and was developed by Bell Lab-

oratories. The Data set 2, given in Table 3, was reported

by Stringfellow and Andrews[12] based on failure data

come from three releases of a large medical record sys-

tem, consisting of 188 software components. Each com-

ponent contains a number of files. Initially, the software

consisted of 173 software components. All three

releases added functionality to the product. Over the

three releases, 15 components were added. Between

three and seven new components were added in each

release. Many other components were modified in all

three releases as a side effect of the added functionality.

∅p B() 1 B–()dZt θ0 θq B()a
t

+=

Table 1. Software reliability model and time series model

Type Model Function

Software Reliability Goel-Okumoto

Imperfect Debugging

Pham-Zhang

Time Series ARIMA(1,1,1)

ARMA(2,1)

ARIMA(0,1,0)

ARIMA(p,d,q)

m t() a 1 e
bt–

–()=

m t()a 1 αt–() 1
α

b
---–⎝ ⎠

⎛ ⎞
αat+

m t()

c a+() 1 e
bt–

–[] a

b α–
---------- e

αt–
e

bt–
–()–⎝ ⎠

⎛ ⎞

1 βe
bt–

+

---=

Zt δ Zt 1–
∅Zt 1–

∅Zt 2–
at θat 1–
–+ + + +=

Zt δ ∅1Zt 1– ∅– 2Zt 2– at θat 1––+ +=

Zt δ Zt 1– at+ +=

Zt ∅1Zt 1– … ∅pZt p– at θ1at 1– … θqat q–+ + + + + +=

Table 2. RTC&CS data set[11] - Data set 1

t(hour) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

data 27 43 54 64 75 83 84 89 92 93 97 104 106 111 116 122 122 127 128 129 131 132 134 135 136

Table 3. Release data set[12]- Data set 2

t(week) 1 2 3 4 5 6 7 8 9 10 11 12 13

data 9 14 21 28 53 56 58 63 70 75 76 76 77

Table 4. OCS data set[13] - Data set 3

t(week) 1 2 3 4 5 6 7 8 9 10 11 12

data 10 12 16 22 28 36 40 43 44 50 51 55

J. Chosun Natural Sci., Vol. 7, No. 3, 2014

196 Kwang Yoon Song, In Hong Chang, and Dong Su Lee

In system test and after release, a defect report is actu-

ally a failure. This study uses failure data from the last

drop of system test and after release. Table shows

cumulative number of failures by week in the last drop

of system test for all three release. The cumulative

number of failures after release are also shown in the

last row. Of all Release data set, we used Release 3 data

set. The Data set 3, given in Table 4, was reported by

Pham[13]. The On-line Communication System (OCS)

project at ABC Software Company was completed in

2000. The project consisted of one unit-manager, one

user interface software engineer, and ten software engi-

neers/testers. The overall effort for each of the four

phases in the software development process of the

project can be described as follows: Analysis(7 weeks),

Design(8 weeks), Coding(13 weeks), Testing(12 weeks).

The data was collected over a period of 12 weeks dur-

ing which time the testing started and stopped many

times. Errors detection is broken down into sub-catego-

ries to help the development and testing team to sort and

solve the most critical Modification Requests (MRs)

first. These sub-categories are referred to as the severity

level depending on the nature of the problem with 1

being the most severe problem, with 2 being the major

problem and 3 being a minor problem. OCS data set,

maps into week, consists of three types of errors:

server1, server2, and server3. The observation time

(week) and the number of errors detected per week are

presented in Pham(2003). Of all OCS data set, we used

OCS 3 data set.

3.2. Estimation and Prediction

In this paper, the analytical expression for the mean

value function is derived and the model parameters to

be estimated in the mean value function can then be

obtained. We are used common criteria for the model

estimation of the goodness-of-fit such as the sum of

squared errors (SSE), the mean squared error (MSE).

The sum of squared errors and the mean squared error

given by

where yi is total number of failure observed at time ti

and m(ti) according to the actual data and is the esti-

SSE m ti() yi–()2 MSE,
i 1=

n

∑

m ti() yi–()2

i 1=

n

∑

n N–
--------------------------------= =

Table 5. Parameter estimates and MSE from Data set 1

Model Parameter estimate SSE(fit) MSE(fit)

G-O =128.913, =0.1561 618.0973 34.3387

Imperfect Debugging =69.991, =0.442, =0.050 79.5789 4.6811

Pham-Zhang =179.0, =0.558, =0.013, =0.213, =206.0 78.7691 5.2513

ARIMA(1,1,1) =6.423, =0.894, =0.359 258.0636 14.3369

Table 6. Parameter estimates and MSE from Data set 2

Model Parameter estimate SSE(fit) MSE(fit)

G-O =214.391, =0.0445 244.5456 30.5682

Imperfect Debugging =212.370, =0.045, =0.000001 244.5511 34.9359

Pham-Zhang =165.0, =0.678, =0.013, =8.290, =127.0 146.5754 29.3151

ARMA(2,1) =42.694, =1.926, =0.981, =0.988 418.6297 52.3287

Table 7. Parameter Estimates and MSE from Data set 3

Model Parameter estimate SSE(fit) MSE(fit)

G-O =107.693, =0.0622 36.9388 5.2770

Imperfect Debugging =107.971, =0.062, =0.00 36.9391 6.1565

Pham-Zhang =0.001, =0.280, =0.0, =1.925, =57.12 33.5889 8.3972

ARIMA(0,1,0) =4.091 37.5000 4.1667

â b̂

â b̂ α̂

â b̂ α̂ β̂ ĉ

δ̂ ∅̂ θ̂

â b̂

â b̂ α̂

â b̂ α̂ β̂ ĉ

δ̂ ∅1

ˆ ∅2

ˆ θ̂

â b̂

â b̂ α̂

â b̂ α̂ β̂ ĉ

δ̂

J. Chosun Natural Sci., Vol. 7, No. 3, 2014

Parameter Estimation and Comparison for SRGMs and ARIMA Model in Software Failure Data 197

mated cumulative number of failure at ti for i = 1,2,...n.

The MSE measures the distance of a model estimate

from the actual data with the consideration of the

number n of observations and the number N of param-

eters in the model. The lower MSE indicates less fitting

error, the lower value of MSE is the better the model

fits, relative to other models run on the same data set.

We obtain the time series model of most suitable for

Data set 1, Data set 2, and Data set 3, respectively. We

use a Visual C++ and SPSS program to perform the

analysis and all the calculation for MSE. The parameter

estimation results MSE values for goodness-of-fit of the

existing models is presented. We obtain MSE when

t = 1,..., t = 20 from Data set 1(Table 2), obtain MSE

when t = 1,..., t = 10 from Data set 2(Table 3) and obtain

MSE when t = 1,..., t = 9 from Data set 3(Table 4).

The 4 models are fitted to the same subset of data to

predict the number of future faults; these results are

compared. The lower SSE (predict) indicates less pre-

diction error, the lower value of SSE (predict) is the bet-

ter the model predicts, relative to other models run on

the same data set. Table 8 presents the prediction results

from week 21 to week 25 in Table 2(Data set 1). The

ARIMA(1,1,1) of time series model predicts better than

Table 8. Predictive values in Data set 1

T

(hours)

Real

data
G-O

Imperfect

debugging

Pham-

Zhang

ARIMA

(1,1,1)

1 27 18.63 25.68 24.20 27.00

2 43 34.57 43.43 41.54 33.42

3 54 48.20 56.09 53.93 56.56

4 64 59.87 65.48 63.01 65.37

5 75 69.85 72.76 70.02 74.11

6 83 78.38 78.69 75.75 85.19

7 84 85.69 83.76 80.70 91.62

8 89 91.93 88.26 85.18 88.31

9 92 97.28 92.41 89.35 93.90

10 93 101.85 96.32 93.32 96.05

11 97 105.76 100.09 97.16 95.67

12 104 109.11 103.76 100.91 100.78

13 106 111.97 107.37 104.58 109.78

14 111 114.42 110.94 108.18 109.83

15 116 116.51 114.48 111.73 115.73

16 122 118.31 118.01 115.23 121.05

17 122 119.84 121.53 118.68 127.71

18 127 121.15 125.04 122.08 124.73

19 128 122.27 128.55 125.44 131.34

20 129 123.23 132.06 128.75 130.77

21 131 124.05 135.56 132.03 131.21

22 132 124.76 139.06 135.25 133.88

23 134 125.36 142.56 138.44 136.94

24 135 125.87 146.06 141.59 140.36

25 136 126.31 149.56 144.69 144.10

SSE

(Predict)

352.705 450.161 150.335 106.562

Table 9. Predictive values in Data set 2

T

(weeks)

Real

data
G-O

Imperfect

debugging

Pham-

Zhang

ARMA

(2,1)

1 9 9.33 9.34 4.76 9.00

2 14 18.26 18.28 12.42 10.57

3 21 26.79 26.82 22.85 19.04

4 28 34.96 34.98 34.53 27.81

5 53 42.77 42.79 45.34 35.52

6 56 50.24 50.25 54.08 63.19

7 58 57.38 57.38 60.71 64.15

8 63 64.22 64.20 65.79 64.36

9 70 70.75 70.72 69.88 67.98

10 75 77.00 76.96 73.39 73.59

11 76 82.98 82.92 76.55 76.88

12 76 88.70 88.61 79.51 75.96

13 77 94.17 94.06 82.35 74.15

SSE

(Predict)

505.076 497.880 41.286 8.899

Table 10. Predictive values in Data set 3

T

(weeks)

Real

data
G-O

Imperfect

debugging

Pham-

Zhang

ARIMA

(0,1,0)

1 10 6.49 6.49 5.68 10.00

2 12 12.60 12.59 11.66 14.25

3 16 18.33 18.33 17.73 16.25

4 22 23.72 23.71 23.64 20.25

5 28 28.78 28.78 29.18 26.25

6 36 33.54 33.54 34.20 32.25

7 40 38.02 38.02 38.60 40.25

8 43 42.22 42.22 42.36 44.25

9 44 46.17 46.17 45.48 47.25

10 50 49.88 49.89 48.02 48.25

11 51 53.36 53.38 50.06 52.50

12 55 56.64 56.66 51.68 56.75

SSE

(Predict)

8.283 8.441 15.824 8.375

J. Chosun Natural Sci., Vol. 7, No. 3, 2014

198 Kwang Yoon Song, In Hong Chang, and Dong Su Lee

other model for every week. Table 9 presents the pre-

diction results from week 11 to week 13 in Table 3(Data

set 2). The ARMA(2,1) of time series model predicts

better than other model for every week, also. Table 10

presents the prediction results from week 10 to week 12

in Table 4(Data set 3). The G-O model predicts better

than other model for every week. But the prediction

results are very similar values except Pham-Zhang

model[5]. Fig. 1, Fig. 2, and Fig. 3 shows the grape(plot)

of the failure data from Data set 1, Data set 2, and Data

set 3. Also, it shows the curves for the proposed 4 mod-

els, respectively.

4. Conclusions

We considered the functions for NHPP software reli-

ability model and time series model. We presented

parameter estimates for the proposed models. The val-

ues of SSE, MSE for models in three data sets is pre-

sented. We compared the predicted number of faults the

actual three data sets using the mean value functions

and time series ARMA and ARIMA model. In Data set

1, the ARIMA(1,1,1) of time series model predicts bet-

ter than other model for every week. Also, the

ARMA(2,1) of time series model predicts better than

other model for every week in Data set 2. In Data set

3, the G-O model predicts better than other model for

every week. But we confirmed that the prediction results

are very similar values except Pham-Zhang model.

Fig. 1. The mean value function and time series ARIMA

(1,1,1) curve from Data set 1.

Fig. 2. The mean value function and time series ARMA

(2,1) curve from Data set 2.

Fig. 3. The mean value function and time series ARIMA

(0,1,0) curve from Data set 3.

J. Chosun Natural Sci., Vol. 7, No. 3, 2014

Parameter Estimation and Comparison for SRGMs and ARIMA Model in Software Failure Data 199

Acknowledgements

This study was supported by research funds from

Chosun University, 2013.

References

[1] R. Kitchin and M. Dodge, “Code/space: Software

and everyday life”, The MIT Press, 2011.

[2] K. S. Lew, T. S. Dillon, and K. E. Forward, “Soft-

ware complexity and its impact on software reli-

ability”, IEEE Trans. Softw. Eng., Vol. 14, pp.

1645-1655, 1988.

[3] T. Goradia, “Dynamic impact analysis: A cost-

effective technique to enforce error-propagation”,

Acm Sigsoft Softw. Eng. Notes, Vol. 18, pp. 171-

181, 1993.

[4] A. L. Goel and K. Okumoto, “Time dependent error

detection rate model for software reliability and

other performance measures,” IEEE T. Reliab., Vol.

R-28, pp. 206-211, 1979.

[5] H. Pham and X. Zhang, “An NHPP software reli-

ability models and its comparison”, Int. J. Rel. Qual.

Saf. Eng., Vol. 4, pp. 269-282, 1997.

[6] H. Pham, L. Nordmann, and X. Zhang, “A general

imperfect software debugging model with S-shaped

fault detection rate”, IEEE T. Reliab., Vol. 48, pp.

169-175, 1999.

[7] S. Yamada, K. Tokuno, and S. Osaki, S, “Imperfect

debugging models with fault introduction rate for

software reliability assessment”, Int. J. Syst. Sci.,

Vol. 23, pp. 2253-2264, 1992.

[8] K. Y. Song and I. H. Chang, “Parameter estimation

and prediction for NHPP software reliability model

and time series regression in software failure data”,

J. Chosun Natural Sci., Vol. 7, pp. 67-70, 2014.

[9] R. H. Shumway and D. S. Stoffer, “Time series

analysis and its applications”, Springer, 2006.

[10] W. S. William and Wei, “Time series analysis”,

Pearson, 2006.

[11] J. D. Musa, A. Iannino, and K. Okumoto, “Software

reliability: measurement, prediction, application”,

McGraw-Hill, New York, 1987.

[12] C. Stringfellow and A. A. Andrews, “An empirical

method for selecting software reliability growth

models”, Empirical Software Engineering, Vol. 7,

pp. 319-343, 2002.

[13] H. Pham, “System software reliability”, Springer,

2006.

