References
- Amachika T, Moriai R, Tsuji N, Watanabe N (2007). Diagnostic relevance of overexpressed mRNA of novel oncogene with kinase-domain (NOK) in lung cancers. Lung Cancer, 56, 337-40. https://doi.org/10.1016/j.lungcan.2007.01.002
- Barouni M, Larizadeh MH, Sabermahani A, Ghaderi H (2012). Markov's modeling for screening strategies for colorectal cancer. Asian Pac J Cancer Prev, 13, 5125-9. https://doi.org/10.7314/APJCP.2012.13.10.5125
- Barrett J, Jiwa M, Rose P, Hamilton W (2006). Pathways to the diagnosis of colorectal cancer: an observational study in three UK cities. Fam Pract, 23, 15-9. https://doi.org/10.1093/fampra/cml910
- Berclaz G, Andres AC, Albrecht D, et al (1996). Expression of the receptor protein tyrosine kinase myk-1/htk in normal and malignant mammary epithelium. Biochem Biophys Res Commun, 226, 869-75. https://doi.org/10.1006/bbrc.1996.1442
- Blume-Jensen P and Hunter T (2001). Oncogenic kinase signalling. Nature, 411, 355-65. https://doi.org/10.1038/35077225
- Chen Y, Li YH, Chen XP, et al (2005). Point mutation at single tyrosine residue of novel oncogene NOK abrogates tumorigenesis in nude mice. Cancer Res, 65, 10838-46. https://doi.org/10.1158/0008-5472.CAN-05-1091
- Chung S, Tamura K, Furihata M, et al (2009). Overexpression of the potential kinase serine/ threonine/tyrosine kinase 1 (STYK 1) in castration-resistant prostate cancer. Cancer Sci, 100, 2109-14. https://doi.org/10.1111/j.1349-7006.2009.01277.x
- Danilkovitch-Miagkova A, Zbar B (2002). Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest, 109, 863-7. https://doi.org/10.1172/JCI0215418
- Ding X, Jiang QB, Li R, Chen S, Zhang S (2012). NOK/ STYK1 has a strong tendency towards forming aggregates and colocalises with epidermal growth factor receptor in endosomes. Biochem Biophys Res Commun, 421, 468-73. https://doi.org/10.1016/j.bbrc.2012.04.016
- Fambrough D, McClure K, Kazlauskas A, Lander ES (1999). Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell, 97, 727-41. https://doi.org/10.1016/S0092-8674(00)80785-0
- Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F (1987). A novel putative tyrosine kinase receptor encoded by the eph gene. Science, 238, 1717-20. https://doi.org/10.1126/science.2825356
- Hubbard SR and Till JH (2000). Protein tyrosine kinase structure and function. Annu Rev Biochem, 69, 373-98. https://doi.org/10.1146/annurev.biochem.69.1.373
- Jackson KA, Handy J, Kimbro KS (2009). Aberrant STYK1 expression in ovarian cancer tissues and cell lines. J Ovarian Res, 2, 15-21. https://doi.org/10.1186/1757-2215-2-15
- Karimi K, Mahmoudi T, Karimi N, et al (2013). Is there an association between variants in candidate insulin pathway genes IGF-I, IGFBP-3, INSR, and IRS2 and risk of colorectal cancer in the Iranian population? Asian Pac J Cancer Prev, 14, 5011-6. https://doi.org/10.7314/APJCP.2013.14.9.5011
- Kimbro KS, Willard M, Moore JA, Freeman S (2008). A novel gene STYK1/NOK is upregulated in estrogen receptor-alpha negative estrogen receptor-beta positive breast cancer cells following estrogen treatment. Mol Biol Rep, 35, 23-7. https://doi.org/10.1007/s11033-006-9047-1
- Kondoh T, Kobayashi D, Tsuji N, Kuribayashi K, Watanabe N (2009). Overexpression of serine threonine tyrosine kinase 1/novel oncogene with kinase domain mRNA in patients with acute leukemia. Exp Hematol, 37, 824-30. https://doi.org/10.1016/j.exphem.2009.04.010
- Kornprat P, Pollheimer MJ, Lindtner RA, et al (2011). Value of tumor size as a prognostic variable in colorectal cancer: a critical reappraisal. Am J Clin Oncol, 34, 43-9. https://doi.org/10.1097/COC.0b013e3181cae8dd
- Lamorte L and Park M (2001). The receptor tyrosine kinases: role in cancer progression. Surg Oncol Clin N Am, 10, 271-88,
- Li YH, Wang YY, Zhong S, at al (2009). Transmembrane helix of novel oncogene with kinase-domain (NOK) influences its oligomerization and limits the activation of RAS/MAPK signaling. Mol Cells, 27, 39-45. https://doi.org/10.1007/s10059-009-0003-5
- Liu L, Yu XZ, Li TS, et al (2004). A novel protein tyrosine kinase NOK that shares homology with platelet- derived growth factor/fibroblast growth factor receptors induces tumorigenesis and metastasis in nude mice. Cancer Res, 64, 3491-9. https://doi.org/10.1158/0008-5472.CAN-03-2106
- Matsuda Y, Uenda J, Ishiwata T (2012). Fibroblast growth factor receptor 2: expression, roles, and potential as a novel molecular target for colorectal cancer. Patholog Res Int, 2012, 574768.
- Robinson D, He F, Pretlow T, Kung HJ (1996). A tyrosine kinase profile of prostate carcinoma. Proc Natl Acad Sci USA, 93, 5958-62. https://doi.org/10.1073/pnas.93.12.5958
- Safaee A, Moghimi-Dehkordi B, Fatemi SR, et al (2010). Characteristics of colorectal mucinous adenocarcinoma in Iran. Asian Pac J Cancer Prev, 11, 1373-5.
- Samanian S, Mahjoubi F, Mahjoubi B, Mirzaee R, Azizi R (2011). MDR1 gene polymorphisms: possible association with its expression and clinicopathology characteristics in colorectal cancer patients. Asian Pac J Cancer Prev, 12, 3141-5.
- Sato T, Oshima T, Yoshihara K, et al (2009). Overexpression of the fibroblast growth factor receptor-1 gene correlates with liver metastasis in colorectal cancer. Oncol Re, 21, 211-6.
- Shemirani AI, Haghighi MM, Zadeh SM, et al (2011). Simplified MSI marker panel for diagnosis of colorectal cancer. Asian Pac J Cancer Prev, 12, 2101-4.
- Shepard HM, Brdlik CM, Schreiber H (2008). Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. J Clin Invest, 118, 3574-81. https://doi.org/10.1172/JCI36049
- Siegel R, Naishadham D, Jemal A (2013). Cancer statistics, 2013. CA Cancer J Clin, 63, 11-30. https://doi.org/10.3322/caac.21166
- Spano JP, Lagorce C, Atlan D, et al (2005). Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol, 16, 102-8. https://doi.org/10.1093/annonc/mdi006
- Zwick E, Bange J, Ullrich A (2002). Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol Med, 8, 17-23. https://doi.org/10.1016/S1471-4914(01)02217-1
Cited by
- Depletion of STYK1 inhibits intrahepatic cholangiocarcinoma development both in vitro and in vivo vol.37, pp.10, 2016, https://doi.org/10.1007/s13277-016-5188-6
- STYK1 promotes Warburg effect through PI3K/AKT signaling and predicts a poor prognosis in nasopharyngeal carcinoma vol.39, pp.7, 2017, https://doi.org/10.1177/1010428317711644
- Serine threonine tyrosine kinase 1 is a potential prognostic marker in colorectal cancer vol.15, pp.1, 2015, https://doi.org/10.1186/s12885-015-1285-y
- SMAD3 inducing the transcription of STYK1 to promote the EMT process and improve the tolerance of ovarian carcinoma cells to paclitaxel pp.07302312, 2019, https://doi.org/10.1002/jcb.28371