DOI QR코드

DOI QR Code

직접 수열 확산 대역 시스템의 고속 부호 획득을 위한 순차 추정 기법들의 성능 분석

Performance Analysis of Sequential Estimation Schemes for Fast Acquisition of Direct Sequence Spread Spectrum Systems

  • Lee, Seong Ro (Mokpo National University, Department of Information and Electronics Engineering) ;
  • Chae, Keunhong (Sungkyunkwan University, College of Information & Communication Engineering) ;
  • Yoon, Seokho (Sungkyunkwan University, College of Information & Communication Engineering) ;
  • Jeong, Min-A (Mokpo National University, Department of Computer Engineering)
  • 투고 : 2014.02.03
  • 심사 : 2014.08.06
  • 발행 : 2014.08.31

초록

직접 수열 확산 대역 시스템에서는 (direct sequence spread spectrum: DSSS) 올바른 신호 동기화가 매우 중요하며, 이에 따라 부호 획득을 위한 다양한 순차 추정 기반 기법들이 연구되어 왔다. 대표적으로, rapid acquisition sequential estimation (RASE), seed accumulating SE (SASE), recursive soft SE (RSSE) 등의 기법이 연구되었다. 하지만, 기존의 기법들 간의 객관적인 성능 비교 및 분석은 현재까지 이루어진 바 없다. 본 논문에서는 순차 추정 기반 부호 획득 기법의 대표적 성능 지표인 올바른 칩 추정 확률 및 평균 부호 획득 시간을 (MAT) 이용하여 RASE, SASE, 및 RSSE 기법의 성능을 비교 및 분석한다.

In the direct sequence spread spectrum system, the correct synchronization is very important; hence, several acquisition schemes based on the sequential estimation have been developed. Typically, the rapid acquisition sequential estimation (RASE) scheme, the seed accumulating sequential estimation (SASE) scheme, the recursive soft sequential estimation (RSSE) scheme have been developed for the correct acquisition. However, the objective performance comparison and analysis between former estimation schemes have not been performed so far. In this paper, we compare and analyze the performance of the above sequential estimation schemes by simulating the correct chip probability and the mean acquisition time (MAT).

키워드

참고문헌

  1. A. W. Lam and S. Tantaratana, Theory and Applications of Spread-Spectrum Systems: A Self-Study Course, Piscataway, NJ: IEEE, 1994.
  2. Y. Lee and S. Tantaratana, "Sequential acquisition of PN sequences for DS/SS communications: Design and performance," IEEE J. Selected Areas in Commun., vol. 10, no. 4, pp. 750-759, May 1992. https://doi.org/10.1109/49.136070
  3. B. W. Parkinson and S. W. Gilbert, "NAVSTAR: Global positioning system-ten years later," in Proc. IEEE, vol. 71, pp. 1177-1186, Oct. 1983. https://doi.org/10.1109/PROC.1983.12745
  4. A. Polydoros and C. L. Weber, "A unified approach to serial search spread-spectrum code acquisition-part I: General theory," IEEE Trans. Commun., vol. 32, pp. 542-549, May 1984. https://doi.org/10.1109/TCOM.1984.1096109
  5. L. B. Mistein, J. Gevargiz, and P. K. Das, "Rapid acquisition for direct sequence spread-spectrum communications using parallel SAW convolvers," IEEE Trans. Commun., vol. 33, no. 7, pp. 593-600, Jul. 1985. https://doi.org/10.1109/TCOM.1985.1096354
  6. R. B. Ward, "Acquisition of pseudonoise signals by sequential estimation," IEEE Trans. Commun., vol. 13, no. 4, pp. 474-483, Dec. 1965.
  7. S. Yoon, I. Song, and S. Y. Kim, "Seed accumulating sequential estimation for PN sequence acquisition at low signal-to-noise ratio," J. Signal Process., vol. 82, no. 11, pp. 1795-1799, Nov. 2002. https://doi.org/10.1016/S0165-1684(02)00343-2
  8. L. Yang and L. Hanzo, "Acquisition of m-sequence using recursive soft sequential estimation," IEEE Trans. Commun., vol. 52, no. 2, pp. 199-204, Feb. 2004. https://doi.org/10.1109/TCOMM.2003.822729
  9. D. Chong, B. Lee, S. Kim, Y. B. Joung, I. Song, and S. Yoon, "Phase-shift-network-based differential sequential estimation for code acquisition in CDMA systems," J. KICS, vol. 32, no. 3, pp. 281-289, Mar. 2007.