DOI QR코드

DOI QR Code

이상적인 자기 상관 특성을 갖는 4진 수열

Quaternary Sequence with Ideal Autocorrelation Property

  • 투고 : 2014.04.09
  • 심사 : 2014.07.16
  • 발행 : 2014.08.31

초록

본 연구에서는 짝수 주기와 균형성을 갖는 4진 수열에 대하여 이상적인 자기상관특성을 정의하고, 이것이 이상적인 자기상관특성이 됨을 증명하였다. 또한, 주기가 $2^n-1$인 이상적인 자기 상관 특성을 갖는 이진 수열과 Gray 사상을 이용하여 주기가 $2{\times}(2^n-1)$인 이상적인 자기 상관 특성을 갖는 4진 수열의 생성법을 제안한다. 또한 새로 제안된 4진 수열의 자기상관 분포도 유도하였다.

In this paper, we define ideal autocorrelation property for balanced quaternary sequence with even period. We also prove that our definition is ideal autocorrelation property for balanced quaternary sequence with even period. Furthermore, we propose a generation method of quaternary sequence with ideal autocorrelation property of period $2{\times}(2^n-1)$ using a binary sequence with ideal autocorrelation of period $2^n-1$ and Gray mapping. We also derive the autocorrelation value distribution of the newly proposed quaternary sequence.

키워드

참고문헌

  1. H. D. Luke, H. D. Schotten, and H. Hadinejad-Mahram, "Binary and quadriphase sequences with optimal autocorrelation properties: a survey," IEEE Trans. Inf. Theory, vol. 49, no. 12, pp. 3271-3282, Dec. 2003. https://doi.org/10.1109/TIT.2003.820035
  2. J. F. Dillon and H. Dobbertin, "New cyclic difference sets with singer parameters," Finite Fields Appl., vol. 10, no. 3, pp. 342-389, Jul. 2004. https://doi.org/10.1016/j.ffa.2003.09.003
  3. B. Gordon, W. H. Mills, and L. R. Welch, "Some new difference sets," Canadian J. Math., vol. 14, no. 4, pp. 614-625, 1962. https://doi.org/10.4153/CJM-1962-052-2
  4. J.-S. No, H. Chung, and M. S. Yun, "Binary pesudorandom sequences of period with ideal autocorrelation generated by the polynomial," IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1278-1282, May 1998. https://doi.org/10.1109/18.669400
  5. V. M. Sidel'nikov, "Some -valued pseudorandom sequences and nearly equidistant codes," Probl. Info. Trans., vol. 5, no. 1, pp. 12-16, 1969.
  6. H. D. Schotten, "New optimum ternary compelmentary sets and almost quadriphase, perfect sequences," in Proc. Int. Conf. Neural Netw. Signal Process.'95, pp. 1106-1109, Nanjing, China, Dec. 1995.
  7. H. D. Schotten, "Optimum complementary sets and quadriphase sequences derived from q-ary m-sequences," in Proc. IEEE Int. Symp. Inf. Theory'97, P. 485, Ulm Germany, Jun.-Jul. 1997.
  8. S. M. Krone and D. V. Sarwate, "Quadriphase sequences for spread spectrum multiple-access communication," IEEE Trans. Inf. Theory, vol. 30, no. 3, pp. 520-529, May 1984. https://doi.org/10.1109/TIT.1984.1056913
  9. C. E. Lee, "Perfect q-ary sequences form multiplicative characters over GF(p)," Electron. Lett., vol. 28, no. 9, pp. 833-835, Apr. 1992. https://doi.org/10.1049/el:19920527
  10. J.-W. Jang, Y.-S. Kim, S.-H. Kim, and J.-S. No, "New quaternary sequences with ideal autocorrelation constructed binary sequences with ideal autocorrelation," in Proc. IEEE Inf. Theory, pp. 278-281, Seoul, Korea, Jul. 2009.
  11. Y.-S. Kim, "New secure network coding scheme with low complexity," J. KICS, vol. 38A, no. 4, pp. 295-302, Apr. 2013. https://doi.org/10.7840/kics.2013.38A.4.295
  12. Y.-J. Cho, J.-S. No, and D.-J. Shin, "Low complexity PTS scheme for reducing PAPR in OFDM systems," J. KICS, vol. 38A, no. 2, pp. 201-208, Feb. 2013. https://doi.org/10.7840/kics.2013.38A.2.201
  13. N. Kim, "Information potential and blind algorithms using a biased distribution of random-order symbols," J. KICS, vol. 38A, no. 1, pp. 26-32, Jan. 2013. https://doi.org/10.7840/kics.2013.38A.1.26