References
-
Al-Shamrani, M. (1998), "Application of the
$C_{\alpha}/C_{c}$ concept to secondary compression of Sabkha soils", Can. Geotech. J., 35(1), 15-26. https://doi.org/10.1139/t97-053 - Arulanandan, K., Shen, C.K. and Young, R.B. (1971), "Undrained creep behaviour of a coastal organic silty clay", Geotechnique, 21(4), 359-375. https://doi.org/10.1680/geot.1971.21.4.359
- Augustesen, A., Liingaard, M. and Lade, P.V. (2004), "Evaluation of time-dependent behavior of soils", Int. J. Geomech., 4(3), 137-156. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(137)
- Badv, K. and Sayadian, T. (2012), "An investigation into the geotechnical characteristics of Urmia peat", Iran. J. Sci. Tech.-Transact. Civil Eng., 36(C2), 167-180.
- Bishop, A.W. and Lovenbury, H.T. (1969), "Creep characteristics of two undisturbed clays", Proceedings of 7th International Conference of Soil Mechanics and Foundation Engineering, Mexico, 1, 29-37.
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329
- Chen, X.P., Zeng, L.L., Lu, J., Qian, H. and Kuang, L.W. (2008), "Experiment study of mechanical behavior of structured clay", Chin. J. Rock Soil Mech., 29(12), 3223-3228.
- Deng, Y.F., Cui, Y.J., Tang, A.M., Li, X.L. and Sillen, X. (2012), "An experimental study on the secondary deformation of boom clay", Appl. Clay Sci., 59-60, 19-25. https://doi.org/10.1016/j.clay.2012.02.001
- den Haan, E.J. and Edil, T.B. (1993), "Secondary and tertiary compression of peat", Proceedings of the International Workshop on Advances in Understanding and Modelling the Mechanical Behaviour of Peat, Rotterdam, Netherlands, June.
- Dhowian, A.W. and Edil, T.B. (1980), "Consolidation behavior of peats", Geotech. Test. J., 3(3), 105-114. https://doi.org/10.1520/GTJ10881J
- Fodil, A., Aloulou, W. and Hicher, P.Y. (1997), "Viscoplastic behavior of soft clay", Geotechnique, 47(3), 581-591. https://doi.org/10.1680/geot.1997.47.3.581
-
Jesmani, M., Vaezi, R. and Kamalzare, M. (2012), "Correlation between
$C_{\alpha}/C_{c}$ ratio and index parameters of soil", Quarter. J. Eng. Geol. Hydrogeol., 45(2), 207-220. https://doi.org/10.1144/1470-9236/09-060 - Mesri, G. (1973), "Coefficient of secondary compression", J. Soil Mech. Found. Div., ASCE, 99(1), 123-137.
- Mesri, G. (2003), "Primary compression and secondary compression", Geotech. Spec. Pub., 119, 122-166.
- Mesri, G. and Castro, A. (1987), "Ca/Cc concept and K0 during secondary compression", J. Geotech. Eng., ASCE , 113(3), 230-247. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:3(230)
- Mesri, G. and Godlewski, P.M. (1977), "Time and stress compressibility interrelationship", J. Geotech. Eng. Div., ASCE, 103(5), 417-430.
- Mesri, G., Stark, T.D., Ajlouni, M.A. and Chen, C.S. (1997), "Secondary compression of peat with or without surcharging", J Geotech. Geoenviron. Eng., 123(5), 411-421. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(411)
- Mesri, G., Ajlouni, M.A., Feng, T.W. and Lo, D.O.K. (2001), "Surcharging of soft ground to reduce sencondary compression", Proceedings of 3th International Conference on Soft Soil Engineering, Hong Kong, December, pp. 55-65.
- Miao, L., Zhang, J. and Wang, F. (2008), "Time-dependent deformation behavior of Jiangsu marine clay", Marine Georesour. Geotechnol., 26(2), 86-100. https://doi.org/10.1080/10641190801952394
- Qiao, J.G., Huang, Z.G. and Huang, G.Q. (2002), "The mollisol layers digital terrain model of the Pearl River delta", Chin. J. Foshan Univ. (Natural Science Edition), 20(4), 47 -52.
- Santagata, M., Bobet, A., Johnston, C.T. and Hwang, J. (2008), "One-dimensional compression behavior of a soil with high organic matter content", J. Geotech. Geoenviron., 134(1), 1-13. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(1)
- Sheahan, T., Ladd, C. and Germaine, J. (1996), "Rate-dependent undrained shear behavior of saturated clay", J. Geotech. Eng., 122(2), 99-108. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(99)
- Singh, A. and Mitchell, J.K. (1968), "General stress-strain-time function for soils", J. Soil Mech. Found. Div., 94(1), 21-46.
- Tavenas, F., Leroueil, S., La Rochelle, P. and Roy, M. (1978), "Creep behaviour of an undisturbed lightly overconsolidated clay", Can. Geotech. J., 15(3), 402-423. https://doi.org/10.1139/t78-037
- Tian, W.M., Silva, A.J., Veyera, G.E. and Sadd, M.H., (1994), "Drained creep of undisturbed cohesive marine sediments", Can. Geotech. J., 31(6), 841-855. https://doi.org/10.1139/t94-101
- Tong, F., Yin, J.H. and Pei, H.F. (2012), "Experimental study on complete consolidation behavior of Hong Kong marine deposits", Marine Georesour. Geotechnol., 30(4), 291-304. https://doi.org/10.1080/1064119X.2011.626508
- Zeng, L.L. and Chen, X.P. (2009), "Analysis of mechanical characteristics of soft soil under different stress paths", Chin. J. Rock Soil Mech., 30(5), 1264-1270.
- Zhou, Q.J. and Chen, X.P. (2006), "Experimental study on creep characteristics of soft soils", Chin. J. Geotech. Eng., 28(5), 626-630.
- Zhu, J.G. and Yin, J.H. (2001), "Drained creep behaviour of soft Hong Kong marine deposits", Geotechnique, 51(5), 471-474. https://doi.org/10.1680/geot.2001.51.5.471
Cited by
- Experimental study on the performance of compensation grouting in structured soil vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.335
- Prediction of one-dimensional compression behavior of Nansha clay using fractional derivatives vol.35, pp.5, 2017, https://doi.org/10.1080/1064119X.2016.1217958
- A 1D model considering the combined effect of strain-rate and temperature for soft soil vol.18, pp.2, 2014, https://doi.org/10.12989/gae.2019.18.2.133
- Numerical Simulation and Experiment Study on the Characteristics of Non-Darcian Flow and Rheological Consolidation of Saturated Clay vol.11, pp.7, 2019, https://doi.org/10.3390/w11071385
- An Investigation of Time-Dependent Deformation Characteristics of Soft Dredger Fill vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8861260