참고문헌
- ABAQUS (2011), ABAQUS Documentation, Version 6. 11-1.
- Barenblatt, G.I. (1962), "The mathematical theory of equilibrium of cracks in brittle fracture", Advances in Applied Mechanics, 7, 55-129. https://doi.org/10.1016/S0065-2156(08)70121-2
- Batchelor, G.K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, London, UK, p.615.
- Bowie, O.L. (1964), "Rectangular tensile sheet with symmetric edge cracks", Journal of Applied Mechanics, 31(2), 208-212. https://doi.org/10.1115/1.3629588
- Camanho, P.P. and Davila, C.G. (2002), "Mixed-mode decohesion finite elements for the simulation of delamination in composite materials", NASA/TM-2002-211737, pp. 1-42.
- Chen, Z. (2011), "Finite element modeling of viscosity-dominated hydraulic fractures", Journal of Petroleum Science and Engineering, 88-89, 136-144.
- Chen, Z.R., Bunger, A.P., Zhang, X. and Jeffrey, R.G. (2009), "Cohesive zone finite element based modeling of hydraulic fractures", Acta Mech. Solida Sin., 22(5), 443-452. https://doi.org/10.1016/S0894-9166(09)60295-0
- Dugdale, D.S. (1960), "Yielding of steel sheets containing slits", Journal of the Mechanics and Physics of Solids, 8(2), 100-104. https://doi.org/10.1016/0022-5096(60)90013-2
- Fjaer, E. (2008), Petroleum Related Rock Mechanic, Elsevier Publication Books, p. 491.
- Huang, R., Sukumar, N. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the extended finite element method Part II: Numerical applications", Int. J. Solids Struct., 40, 7539-7552. https://doi.org/10.1016/j.ijsolstr.2003.08.001
- Peirce, A. and Detournay, E. (2008), "An implicit level set method for modeling hydraulically driven fractures", Computer Methods in Applied Mechanics and Engineering, 197(33-40), 2858-2885. https://doi.org/10.1016/j.cma.2008.01.013
- Sarris, E. and Papanastasiou, P. (2011), "The influence of the cohesive process zone in hydraulic fracture modeling", International Journal of Fracture, 167(1), 33-45. https://doi.org/10.1007/s10704-010-9515-4
- Settari, A. and Cleary, M.P. (1984), "Three-dimensional simulation of hydraulic fracturing", J. Pet. Technol., 36(8), 1177-1190. https://doi.org/10.2118/10504-PA
- Tada, H., Paris, P.C. and Irwin, G.R. (1973), The Stress Analysis of Cracks Handbook, Del Research Corp., Hellertown, PA, USA.
- Tomar, V., Zhai, J. and Zhou, M. (2004), "Bounds for element size in a variable stiffness cohesive finite element model", Int. J. Numer. Method. Eng., 61(11), 1894-1920. https://doi.org/10.1002/nme.1138
- Valco, P. and Economides, M.J. (1997), Hydraulic Fracture Mechanics, John Wiley & Sons Ltd., Texas A&M University, TX, USA.
- Zhang, G.M., Liu, H., Zhang, J., Wu, H.A. and Wang, X.X. (2010), "Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture", Journal of Petroleum Science and Engineering, 72(3-4), 310-317. https://doi.org/10.1016/j.petrol.2010.03.032
- Zhu, H.Y., Deng, J.G., Liu, S.J., Wen, M., Peng, C.Y., Li, J.R., Chen, Z.J., Hu, L.B., Lin, H. and Guang, D. (2014), "Hydraulic fracturing experiments of highly deviated well with oriented perforation technique", Geomechanics and Engineering, Int. J., 6(2), 153-172. https://doi.org/10.12989/gae.2014.6.2.153
피인용 문헌
- In situ horizontal stress effect on plastic zone around circular underground openings excavated in elastic zones vol.8, pp.6, 2015, https://doi.org/10.12989/gae.2015.8.6.783
- Stress field interference of hydraulic fractures in layered formation vol.9, pp.5, 2015, https://doi.org/10.12989/gae.2015.9.5.645
- A fully coupled three-dimensional hydraulic fracture model to investigate the impact of formation rock mechanical properties and operational parameters on hydraulic fracture opening using cohesive elements method vol.10, pp.7, 2017, https://doi.org/10.1007/s12517-017-2939-7
- Numerical Study on the Triaxial Stress Condition for Ring-like Fractures around Deep Underground Openings vol.48, pp.2, 2018, https://doi.org/10.1520/JTE20170202
- The influence of deviatoric and horizontal differential stress and pore pressure on hydraulic fracture opening by fully coupled 3D cohesive elements method vol.12, pp.2, 2019, https://doi.org/10.1007/s12517-018-4222-y
- Factors affecting waterproof efficiency of grouting in single rock fracture vol.12, pp.5, 2014, https://doi.org/10.12989/gae.2017.12.5.771
- Coupling relevance vector machine and response surface for geomechanical parameters identification vol.15, pp.6, 2018, https://doi.org/10.12989/gae.2018.15.6.1207
- An experimental study on the hydraulic fracturing of radial horizontal wells vol.17, pp.6, 2014, https://doi.org/10.12989/gae.2019.17.6.535
- Analysis of permeability in rock fracture with effective stress at deep depth vol.22, pp.5, 2014, https://doi.org/10.12989/gae.2020.22.5.375
- Modelling the coupled fracture propagation and fluid flow in jointed rock mass using FRACOD vol.22, pp.6, 2020, https://doi.org/10.12989/gae.2020.22.6.529
- Fracability Evaluation Method and Influencing Factors of the Tight Sandstone Reservoir vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/7092143
- Numerical simulation and optimization of hydraulic fracturing operation in a sandstone-mudstone interbedded reservoir vol.14, pp.21, 2021, https://doi.org/10.1007/s12517-021-08506-0