DOI QR코드

DOI QR Code

PER3, a novel target of miR-103, plays a suppressive role in colorectal cancer in vitro

  • Hong, Zhang (The Nurse Department of Organ Transplantation, Xiangya Hospital, Central South University) ;
  • Feng, Zhang (Xiangya School of Medicine, Central South University) ;
  • Sai, Zhang (Institute of Medical Sciences, Xiangya Hospital, Central South University) ;
  • Tao, Su (Institute of Medical Sciences, Xiangya Hospital, Central South University)
  • Received : 2013.10.01
  • Accepted : 2013.12.23
  • Published : 2014.09.30

Abstract

Colorectal cancer has become the third most common cancer and leads to high mortality worldwide. Although colorectal cancer has been studied widely, the underlying molecular mechanism remains unclear. PER3 is related to tumor differentiation and the progression of colorectal cancer. High expression of miR-103 is associated with poor prognosis in patients with colorectal cancer. However, the relationship between miR-103 and PER3 in CRC cells remains unclear. In this study, we found that PER3 was downregulated in CRC tissues and CRC cell lines, whereas miR-103 was upregulated in CRC cell lines. We also found that PER3 promoted CRC cells apoptosis. These results indicate that PER3 plays a suppressive role in CRC cells. Moreover, we found that PER3 was targeted, at least partially, by miR-103. Taken together, we provide evidence to characterize the role of PER3 in CRC, which may be a new therapeutic target for CRC.

Keywords

References

  1. Gery, S. and Koeffler, H. P. (2007) The role of circadian regulation in cancer. Cold. Spring. Harb. Symp. Quant. Biol. 72, 459-464. https://doi.org/10.1101/sqb.2007.72.004
  2. Buhr, E. D. and Takahashi, J. S. (2013) Molecular components of the Mammalian circadian clock. Handb. Exp. Pharmacol. 217, 3-27. https://doi.org/10.1007/978-3-642-25950-0_1
  3. Wang, X., Yan, D., Teng, M., Fan, J., Zhou, C., Li, D., Qiu, G., Sun, X., Li, T., Xing, T., Tang, H., Peng, X. and Peng, Z. (2012) Reduced expression of PER3 is associated with incidence and development of colon cancer. Ann. Surg. Oncol. 19, 3081-3088. https://doi.org/10.1245/s10434-012-2279-5
  4. Matsuo, T., Yamaguchi, S., Mitsui, S., Emi, A., Shimoda, F. and Okamura, H. (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302, 255-259. https://doi.org/10.1126/science.1086271
  5. Calin, G. A. and Croce, C. M. (2006) MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857-866 https://doi.org/10.1038/nrc1997
  6. Yu, D., Zhou, H., Xun, Q., Xu, X., Ling, J. and Hu, Y. (2012) microRNA-103 regulates the growth and invasion of endometrial cancer cells through the downregulation of tissue inhibitor of metalloproteinase 3. Oncol. Lett. 3, 1221-1226. https://doi.org/10.3892/ol.2012.638
  7. Annibali, D., Gioia, U., Savino, M., Laneve, P., Caffarelli, E. and Nasi, S. (2012) A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2. PLoS One 7, e40269. https://doi.org/10.1371/journal.pone.0040269
  8. Chen, H. Y., Lin, Y. M., Chung, H. C., Lang, Y. D., Lin, C. J., Huang, J., Wang, W. C., Lin, F. M., Chen, Z., Huang, H. D., Shyy, J. Y., Liang, J. T. and Chen, R. H. (2012) miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res. 72, 3631-3641. https://doi.org/10.1158/0008-5472.CAN-12-0667
  9. Sahar, S. and Sassone-Corsi, P. (2009) Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886-896. https://doi.org/10.1038/nrc2747
  10. Zhu, Y., Stevens, R. G., Hoffman, A. E., Fitzgerald, L. M., Kwon, E. M., Ostrander, E. A., Davis, S., Zheng, T. and Stanford, J. L. (2009) Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study. Cancer Res. 69, 9315-9322. https://doi.org/10.1158/0008-5472.CAN-09-0648
  11. Sato, F., Wu, Y., Bhawal, U. K., Liu, Y., Imaizumi, T., Morohashi, S., Kato, Y. and Kijima, H. (2011) PERIOD1 (PER1) has anti-apoptotic effects, and PER3 has pro-apoptotic effects during cisplatin (CDDP) treatment in human gingival cancer CA9-22 cells. Eur. J. Cancer 47, 1747-1758. https://doi.org/10.1016/j.ejca.2011.02.025
  12. Mazzoccoli, G., Panza, A., Valvano, M. R., Palumbo, O., Carella, M., Pazienza, V., Biscaglia, G., Tavano, F., Di Sebastiano, P., Andriulli, A. and Piepoli, A. (2011) Clock gene expression levels and relationship with clinical and pathological features in colorectal cancer patients. Chronobiol. Int. 28, 841-851. https://doi.org/10.3109/07420528.2011.615182
  13. Gaziel-Sovran, A., Segura, M. F., Di Micco, R., Collins, M. K., Hanniford, D., Vega-Saenz, D. M. E., Rakus, J. F., Dankert, J. F., Shang, S., Kerbel, R. S., Bhardwaj, N., Shao, Y., Darvishian, F., Zavadil, J., Erlebacher, A., Mahal, L. K., Osman, I. and Hernando, E. (2011) miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell. 20, 104-118. https://doi.org/10.1016/j.ccr.2011.05.027
  14. Xu, Y., Zhao, F., Wang, Z., Song, Y., Luo, Y., Zhang, X., Jiang, L., Sun, Z., Miao, Z. and Xu, H. (2012) MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 31, 1398-1407. https://doi.org/10.1038/onc.2011.340
  15. Liu, M., Lang, N., Qiu, M., Xu, F., Li, Q., Tang, Q., Chen, J., Chen, X., Zhang, S., Liu, Z., Zhou, J., Zhu, Y., Deng, Y., Zheng, Y. and Bi, F. (2011) miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int. J. Cancer. 128, 1269-1279. https://doi.org/10.1002/ijc.25452
  16. Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S. and Allgayer, H. (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128-2136. https://doi.org/10.1038/sj.onc.1210856
  17. Weber, D. G., Johnen, G., Bryk, O., Jockel, K. H. and Bruning, T. (2012) Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma--a pilot study. PLoS One 7, e30221. https://doi.org/10.1371/journal.pone.0030221
  18. Niquet, J. and Wasterlain, C. G. (2004) Bim, Bad, and Bax: a deadly combination in epileptic seizures. J. Clin. Invest. 113, 960-962. https://doi.org/10.1172/JCI21478
  19. Danial, N. N. and Korsmeyer, S. J. (2004) Cell death: critical control points. Cell 116, 205-219. https://doi.org/10.1016/S0092-8674(04)00046-7
  20. Shapiro, G. I. (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24, 1770-1783. https://doi.org/10.1200/JCO.2005.03.7689
  21. Xu, Y. (2008) Induction of genetic instability by gain-offunction p53 cancer mutants. Oncogene 27, 3501-3507. https://doi.org/10.1038/sj.onc.1211023
  22. Vousden, K. H. and Lane, D. P. (2007) p53 in health and disease. Nat. Rev. Mol. Cell Biol. 8, 275-283. https://doi.org/10.1038/nrm2147

Cited by

  1. MicroRNA-103a-3p controls proliferation and osteogenic differentiation of human adipose tissue-derived stromal cells vol.47, pp.7, 2015, https://doi.org/10.1038/emm.2015.39
  2. Genetic and epigenetic markers in colorectal cancer screening: recent advances vol.17, pp.7, 2017, https://doi.org/10.1080/14737159.2017.1337511
  3. miR-103 regulates triple negative breast cancer cells migration and invasion through targeting olfactomedin 4 vol.89, 2017, https://doi.org/10.1016/j.biopha.2017.02.028
  4. FZD6 expression is negatively regulated by miR-199a-5p in human colorectal cancer vol.48, pp.6, 2015, https://doi.org/10.5483/BMBRep.2015.48.6.031
  5. LncRNA-GAS5 induces PTEN expression through inhibiting miR-103 in endometrial cancer cells vol.22, pp.1, 2015, https://doi.org/10.1186/s12929-015-0213-4
  6. MicroRNA-103 Promotes Colorectal Cancer by Targeting Tumor Suppressor DICER and PTEN vol.15, pp.5, 2014, https://doi.org/10.3390/ijms15058458
  7. MicroRNA-103 promotes tumor growth and metastasis in colorectal cancer by directly targeting LATS2 vol.12, pp.3, 2016, https://doi.org/10.3892/ol.2016.4814