DOI QR코드

DOI QR Code

해상도변화에 따른 항공초분광영상 토지피복분류의 분류정확도 비교 연구

Study of Comparison of Classification Accuracy of Airborne Hyperspectral Image Land Cover Classification though Resolution Change

  • 조형갑 ((주)지오스토리, 공간정보팀) ;
  • 김동욱 ((주)지오스토리, 솔루션개발팀) ;
  • 신정일 ((주)지오스토리, 기술연구소)
  • 투고 : 2014.09.11
  • 심사 : 2014.09.22
  • 발행 : 2014.09.30

초록

본 논문에서는 각기 다른 3가지 해상도로 촬영된 항공 초분광영상을 이용하여 건물, 도로, 산림 등 8가지 분류군에 대해 토지피복분류를 실시하고 정확도를 비교하는 연구를 수행하였다. 연구는 24밴드(0.5m 공간해상도), 48밴드(1.0m 공간해상도), 96밴드(1.5m 공간해상도)로 각각 1000m, 2000m, 3000m고도에서 촬영된 초분광영상을 이용하여 8가지 클래스에 대해 토지피복분류를 수행하였다. 그 결과 2000m고도에서 촬영된 48밴드 초분광영상을 이용하여 분류한 영상이 가장 높은 분류정확도를 보였고, 24밴드, 96밴드 순으로 분류정확도가 높게 나타났다. 초분광영상 활용에 있어서 1m 공간해상도에 48개밴드를 사용하여 토지피복분류를 수행함에 있어 적합함을 확인하였고 항공 초분광영상을 활용한 주제도 제작과 관련하여 정확도와 실용성 면에서 공간정보 품질이 개선될 것으로 기대한다.

This paper deals with comparison of classification accuracy between three land cover classification results having difference in resolution and they were classified with eight classes including building, road, forest, etc. Airborne hyperspectral image used in this study was acquired at 1000m, 2000m, 3000m elevation and had 24 bands(0.5m spatial resolution), 48 bands(1.0m), 96 bands(1.5m). Assessment of classification accuracy showed that the classification using 48 bands hyperspectral image had outstanding result as compared with other images. For using hyperspectral image, it was verified that 1m spatial resolution image having 48 bands was appropriate to classify land cover and qualitative improvement is expected in thematic map creation using airborne hyperspectral image.

키워드

참고문헌

  1. Chang, C. I., 2003, Hyperspectral imaging: techniques for spectral detection and classification, Kluwer Academic/Plenum Publishers, New York, pp. 2-35.
  2. Cho, H. G. and Lee, K. S., 2014, Comparison between hyperspectral and multispectral images for the classification of coniferous species, Korean Journal of Remote Sensing, Vol. 30, No. 1, pp. 25-36. https://doi.org/10.7780/kjrs.2014.30.1.3
  3. Cho. M. A. Debba, P. Mathieu, R. Naidoo, L. Aardt, J. V. and Asner, G. P., 2010, Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach: canopy-level analysis, IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 11, pp. 4133-4142.
  4. Choi, J. W. Byun, Y. G. Kim, Y. I. and Yu, K. Y., 2006, Support vector machine classification of hyperspectral image using spectral similarity kernel, Journal of the Korean Society for Geospatial information System, Vol. 14, No. 4, pp. 71-77.
  5. Congalton, R. G., 1991, A review of assessing the accuracy of classifications of remotely sensed data, Remote Sensing of Environment, Vol. 37, pp. 35-46. https://doi.org/10.1016/0034-4257(91)90048-B
  6. Goetz, A. F. H., 2009, Three decades of hyperspectral remote sensing of the earth : a personal view, Remote Sensing of Environment, Vol. 113, Supplement 1, pp. S5-S16. https://doi.org/10.1016/j.rse.2007.12.014
  7. ITRES, 2008, ITRES CASI instrument manual.
  8. Jang, S. J. Lee, H. N. Kim, J. K. and Chae, O. S., 1999, A study on the EO-1 hyperion's optimized band selection method for land cover/land use map, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 17, No. 4, pp. 289-297.
  9. Jia, X. and Richards, J. A., 1994, Efficient maximum likelihood classification for imaging spectrometer data sets, IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 2, pp. 274-281. https://doi.org/10.1109/36.295042
  10. Karaska, M. A. Huguenin, R. L. Beacham, J. L. Wang, M. H. Jensen, J. R. and Kaufmann, R. S., 2004, AVIRIS measurements of chlorophyll, suspended minerals, dissolved organic carbon, and turbidity in the Neuse river, North Carolina, Photogrammetric Engineering & Remote Sensing, Vol. 70, No. 1, pp. 125-133. https://doi.org/10.14358/PERS.70.1.125
  11. Kim, S. H. Lee, K. S. Ma, J. R. and Kook, M. J., 2005, Current status of hyperspectral remote sensing: principle, data processing techniques, and applications, Korean Journal of Remote Sensing, Vol. 21, No. 4, pp. 341-369. https://doi.org/10.7780/kjrs.2005.21.4.341
  12. Lo and Yeung., 2002, Concepts and techniques of geo-graphic information systems, Upper Saddle Reiver, NJ: Prentice-Hall, p. 492.
  13. Yoon, J. S. Kang, S. J. and Lee, K. S., 2009, The reflectance patterns of land cover during five years (2004-2008) based on MODIS reflectance temporal profiles, Korean Journal of Remote Sensing, Vol. 25, No. 2, pp. 113-126. https://doi.org/10.7780/kjrs.2009.25.2.113

피인용 문헌

  1. Vicarious Radiometric Calibration of RapidEye Satellite Image Using CASI Hyperspectral Data vol.23, pp.3, 2015, https://doi.org/10.7319/kogsis.2015.23.3.003
  2. Accuracy Assessment of Supervised Classification using Training Samples Acquired by a Field Spectroradiometer: A Case Study for Kumnam-myun, Sejong City vol.24, pp.1, 2016, https://doi.org/10.7319/kogsis.2016.24.1.121
  3. 연안 해저 피복 분류를 위한 항공 초분광영상의 수심보정 vol.23, pp.2, 2014, https://doi.org/10.12672/ksis.2015.23.2.031
  4. 연안 해저 재질 분석을 위한 초분광영상의 보정 방법 vol.19, pp.2, 2014, https://doi.org/10.11108/kagis.2016.19.2.107
  5. 하이퍼센서 정보를 이용한 태화강지역의 비점오염원 분석 vol.20, pp.1, 2014, https://doi.org/10.11108/kagis.2017.20.1.056