DOI QR코드

DOI QR Code

Studies on Slip and Mechanical Properties of Thermoplastic Polyurethane Elastomer with Carboxylic acid and Nano zinc oxide

Carboxylic acid와 nano zinc oxide를 도입한 열가소성 폴리우레탄 탄성체의 슬립특성 및 기계적 물성에 관한 연구

  • Received : 2014.05.27
  • Accepted : 2014.06.13
  • Published : 2014.09.30

Abstract

We synthesized thermoplastic polyurethane elastomer(TPU) with acid group and nano zinc oxide, and characterized their mechanical properties, thermal properties, contact angle and grip property. The effects of the zinc oxide content and size on the physical property of TPU were investigated. When the nano zinc oxide was introduced in TPU with acid group, it had excellent mechanical properties and grip by formation of hydrogen and ionic bonding. The wet slip of TPU with zinc oxide was increased continuously as ionization rate increased due to increase of hydrophilicity and ionic interaction, and mechanical properties were increased with increasing ionization rate up to 50%.

산성기를 도입한 폴리우레탄에 나노산화아연을 첨가하여 열가소성 폴리우레탄 탄성체를 합성하였으며, 합성된 폴리우레탄 탄성체의 기계적물성, 열적특성, 접촉각, 그립특성을 평가하였다. 그리고 산화아연의 함량과 입자 크기가 폴리우레탄 탄성체에 미치는 영향에 대해서 연구하였다. 나노산화아연을 도입한 경우 이온결합이 형성되어 산성기에 의한 수소결합과 동시에 작용하기 때문에 인장강도, 마모 등 기계적 물성 및 그립특성이 향상되는 것이 확인되었다. 폴리우레탄내의 산화아연 함량에 따른 물성평가 결과 나노산화아연 함량이 증가할수록 이온결합 도입에 의한 친수성이 커져서 wet slip이 지속적으로 상승되었으며, 기계적 물성은 산화아연에 의한 이온화율 50%까지 향상되다가 그 이후에는 감소되는 현상을 나타내었다.

Keywords

References

  1. C. Hepburn, "Polyurethane Elastomer", Elsevier, New York (1991).
  2. K. C. Frrish and S. L. Reegen, "Advances in Urethane Science and Technology", vol. 1-8, Technomic USA (1978).
  3. R. Bonart, "Synthetic analogues of polynucleotides. Part 15. The synthesis and properties of poly(5'-amino-3'-O-carboxymethyl-2', 5'-dideoxy-erythro-pentonucleo sides) containing 3'(O)${\rightarrow}$5'(C) acetamidate linkages", Polymer, 20, 1389 (1979). https://doi.org/10.1016/0032-3861(79)90280-5
  4. M. J. Han, K. B. Choi, S. H. Kim, and S. H Lee, "폴리우레탄 탄성체의 분자구조와 물리적 성질과의 관계", Polymer (Korea), 7, 6 (1983).
  5. G. Woods, "The ICI Polyurethane Book", ICI Polyurethanes (1987).
  6. G. Oertel, "Polyurethane Handbook", Carl Hanser Verlag, Munich (1985).
  7. M. Alexander and P. Dubois, "Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials", Mater Sci Eng Rev, 28, 1 (2000).
  8. A. C. Balazs, "Interactions of nanoscopic particles with phase-separating polymeric mixtures", Curr. Opin. Colloid Interface Sci., 4, 443 (2000).
  9. E. P. Giannelis, "Polymer-layered silicate nanocomposites: synthesis, properties and applications.", Appl Organomet Chem, 12, 675 (1998). https://doi.org/10.1002/(SICI)1099-0739(199810/11)12:10/11<675::AID-AOC779>3.0.CO;2-V
  10. PP. Soo, B. Y. Huang, Y. M. Chiang, D. R. Sadoway and A. M. Mayers, "Electrolytes for Solid-state Rechargeable Batteries", J. Electrochem. Soc., 146, 32 (1999). https://doi.org/10.1149/1.1391560
  11. Y. Kojima, A. Usuki, M. Kawasumi, O. Okada, Y. Fukushima and T. Kurachi, "Mechanical properties of nylon 6-clay hybrid", J Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  12. R. P. Sijibesma and E. W. Meiger, "Quadruple hydrogen bonded systems", Chem. Commun., 5 (2003).
  13. M. Muller, R, Stadler, F. Kremer and G. Williams, "On the Motional Coupling between Chain and Junction Dynamics in Thermoreversible Networks", Macromolecules, 28, 6942 (1995). https://doi.org/10.1021/ma00124a034
  14. T. Loontjens, J. Put, B. Coussens, R. Lange, J. Palmen, T. Sleijen and B. Plum, "Novel Supramolecular Polymer Networks Based on Melamine and Imide containing Oligomers", Macromol. symp., 174, 357 (2001).
  15. C. C. Peng and V. Abetz, "A simple pathway toward quantitative modification of polybutadiene: A new approach to thermoreversible cross-linking rubber comprising supramolecular hydrogen-bonding networks", Macromolecules, 38, 5575 (2005). https://doi.org/10.1021/ma050419f
  16. K. Chino, M. Ashiura and J. Natori, "Thermoreversible Crosslinking Rubber using Supramolecular Hydrogen Bonding Networks", Rubber chem. Technol., 75, 713 (2002). https://doi.org/10.5254/1.3544997
  17. K. Chino and M. Ashiura, "Themoreversible Cross-Linking Rubber Using Supramolecular Hydrogen-Bonding Networks", Macromolecules, 34, 9201 (2001). https://doi.org/10.1021/ma011253v
  18. S. H. Son, I. H. Kim, H. J. Lee and J. H. Kim, "수분산성 폴리우레탄의 입자 크기 조절에 관한 연구", Polymer(korea), 21, 375 (1997).
  19. D. G. Hundiwale, U. R. Kapadi and M. V. Pandya, "Effect of Macroglycol Structure and Its Molecular Weight on Physicomechanical Properties of Polyurethanes", J. Appl. Polym. Sci., 55, 1329 (1995). https://doi.org/10.1002/app.1995.070550906
  20. P. C. Powell, "Engineering with polymers", New York: Chapman & Hall (1983).
  21. A. Z. Okkema, S. A. Visser and S. L. Cooper, "Physical and bloodcontacting properties of polyurethanes based on a sulfonic acid-containing diol chain extender", J. Biomed. Mater. Res., 25, 1371 (1991). https://doi.org/10.1002/jbm.820251106
  22. C. Fougnot, M. P. Dupillier and M. Jozefowicz, "Anticoagulant activity of amino acid modified polystyrene resins: influence of the carboxylic acid function", Biomaterials, 4, 101 (1983). https://doi.org/10.1016/0142-9612(83)90048-0
  23. C. Douzon, F. M. Kanmangne, H. Serne, D. Labarre and M. Jozefowicz, "Heparin-like activity of insoluble sulphonated polystyrene resins part III: Binding of dicarboxylic amino acids", Biomaterials, 8, 190 (1987). https://doi.org/10.1016/0142-9612(87)90062-7
  24. T. M. Ko, J. C. Lin and S. L. Cooper, "Surface Characterization and Platelet adhesion studies of Plasma-Carboxylated Polyethylene", J. Colloid. Interf. Sci., 156, 207 (1993). https://doi.org/10.1006/jcis.1993.1101
  25. J. H. Lee, G. Khang, J. W. Lee and H. B. Lee, "Platelet adhesion onto chargeable functional group gradient surfaces", J. Biomed. Mater. Res., 40, 180 (1998). https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<180::AID-JBM2>3.0.CO;2-H
  26. M. A. J. Van Der Mee, J. G. P. Gooeens and M. Van Duin, "Thermoreversible crosslinking of maleated ethylene/ propylene rubber using ionic interactions, hydrogen bonding and a combination thereof", Rubber Chemistry and Technology, 81, 96 (2008). https://doi.org/10.5254/1.3548200
  27. M. A. J. Van Der Mee, J. G. P. Gooeens and M. Van Duin, "Thermoreversible cross-linking of maleated ethylene/propylene copolymers with diamines and amino-alcohols", Polymer, 49, 1239 (2008). https://doi.org/10.1016/j.polymer.2008.01.031
  28. S. Datta, A. K. Bhattacharya and S. K. De, "Reinforcement of EPDM-based ionic thermoplastic elastomer by precipitated silica filler", Polymer, 37, 2581 (1996). https://doi.org/10.1016/0032-3861(96)85376-6
  29. S. Datta, S. K. De, E. G. Kontos and J. M. Wefer, "Ionic thermoplastic elastomer based on maleated epdm rubber. I. Effect of zinc stearate", J. Appl. Polym. Sci., 61, 177 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960705)61:1<177::AID-APP19>3.0.CO;2-4
  30. J. Zheng, R. Ozisik and R. W. Siegel, "Disruption of self-assembly and altered mechanical behavior in polyurethane/zinc oxide nanocomposites", Polymer, 46, 10873 (2005). https://doi.org/10.1016/j.polymer.2005.08.082
  31. J. H. Chang and Y. U. An, "Nanocomposites of polyurethane with various organoclays: Thermomechanical properties, morphology, and gas permeability", J. Polym. Sci: Part B: Polym. Physic., 40, 670 (2002). https://doi.org/10.1002/polb.10124