Anti-Inflammatory and Antioxidative Effects of Acaiberry in Formalin-Induced Orofacial Pain in Rats

흰쥐의 악안면 통증에서 아사이베리의 항염증 및 항산화 효과

  • Kim, Yun-Kyung (Department of Biomedical Health Science, Dong-eui University) ;
  • Hyun, Kyung-Yae (Department of Biomedical Health Science, Dong-eui University) ;
  • Lee, Min-Kyung (Department of Biomedical Health Science, Dong-eui University)
  • 김윤경 (동의대학교 일반대학원 보건의과학과) ;
  • 현경예 (동의대학교 일반대학원 보건의과학과) ;
  • 이민경 (동의대학교 일반대학원 보건의과학과)
  • Received : 2014.05.09
  • Accepted : 2014.06.03
  • Published : 2014.06.30

Abstract

Acaiberry (Euterpe oleracea Mart.) is widely diffused in amazon and is known that has high antioxidant capacity and potential anti-inflammatory activities. The aim of this study was to evaluate analgesic effects of acaiberry in formalin-induced orofacial pain through p38 mitogen-activated protein kinases (p38 MAPK) and nicotinamide adenine dinucleotide phosphate 4 (NOX4) pathway. Rats were divided into 5 groups (n=6); formalin (5%, $50{\mu}L$), formalin after saline (vehicle) or acaiberry (16, 80, 160 mg/kg, intraperitoneally). The nociceptive response was investigated all of groups, p38 MAPK or NOX4 were analysed at dose of 80 mg/kg of acaiberry in rat's medulla oblongata and adrenal gland. Results indicated that acai berry produced analgesic effect in a dose-dependent manner and significantly reduced formalin-induced nociceptive response at 15~40 min. Acaiberry (80 mg/kg) decreased the increased p38 MAPK activation and NOX4 expression in medulla oblongata and adrenal gland. Based on these results, acaiberry is believed to be useful for modulation of orofacial pain and its treatments because of its anti-inflammatory and antioxidative effects.

본 연구에서는 formalin으로 유발된 악안면 염증성 통증모델에서 acaiberry의 진통작용과 항산화작용을 확인하고자 하였다. 실험동물의 악안면 통증은 수염부에 5% formalin ($50{\mu}l$)을 주입하여 유발하였고 45분간 행위반응을 측정하였다. Acaiberry의 통증행위반응 조절효과를 확인하기 위해 formalin 주입 30분 전 실험동물에게 복강투여 하였다. Acaiberry의 통증행위반응조절에 대한 생리적 기전을 확인하기 위해 항염증과 항산화의 지표인 p38 MAPK의 활성 및 NOX4의 발현을 단백정량분석법을 통해 평가하였다. Acaiberry (16, 80, 160 mg/kg)의 복강투여는 실험동물의 통증행위반응을 대조군($290{\pm}17.4$)에 비해 농도 의존적($205.3{\pm}21.8$, $137.8{\pm}21.8$, $53.5{\pm}30.2$)으로 감소시켰다. 이러한 통증행위반응은 시간의 경과에 따라 변화를 나타내었다. Formalin의 주입으로 인한 통증행위반응은 15분 이후부터 증가하여 25분, 30분에 가장 높게 나타났으며 40분까지 지속되다가 45분에 감소되었으며, 15~40분에서 증가되었던 통증행위반응은 acaiberry의 복강투여로 인해 현저하게 감소되었다. 또한 acaiberry의 복강투여는 실험동물의 연수와 부신에서 p38 MAPK활성 및 NOX4의 발현을 감소시켰다. Acaiberry은 포르말린으로 유도한 악안면 통증에서 실험동물의 통증행위반응을 유의하게 감소시켰으며, 이는 p38 MAPK 및 NOX4 경로의 조절을 통한 항염증 및 항산화 작용에 의한 것으로 사료된다.

Keywords

References

  1. Schauss AG, Wu X, Prior RL, et al.: Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae mart. (acai). J Agric Food Chem 54: 8598-8603, 2006. https://doi.org/10.1021/jf060976g
  2. Guerra JF, Magalhaes CL, Costa DC, Silva ME, Pedrosa ML: Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats. J Clin Biochem Nutr 49: 188-194, 2011. https://doi.org/10.3164/jcbn.11-02
  3. Wong DY, Musgrave IF, Harvey BS, Smid SD: Açaí (Euterpe oleraceae Mart.) berry extract exerts neuroprotective effects against ${\beta}$-amyloid exposure in vitro. Neurosci Lett 556: 221- 226, 2013. https://doi.org/10.1016/j.neulet.2013.10.027
  4. Xie C, Kang J, Li Z, et al.: The acai flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-a and IL-6 production through inhibiting $NF-{\kappa}B$ activation and MAPK pathway. J Nutr Biochem 23: 1184-1191, 2012. https://doi.org/10.1016/j.jnutbio.2011.06.013
  5. Fragoso MF, Prado MG, Barbosa L, Rocha NS, Barbisan LF: Inhibition of mouse urinary bladder carcinogenesis by acai fruit (Euterpe oleraceae Martius) intake. Plant Foods Hum Nutr 67: 235-241, 2012. https://doi.org/10.1007/s11130-012-0308-y
  6. Poulose SM, Fisher DR, Larson J, et al.: Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J Agric Food Chem 60: 1084-1093, 2012. https://doi.org/10.1021/jf203989k
  7. Takac I, Schroder K, Zhang L, et al.: The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286: 13304-13313, 2011. https://doi.org/10.1074/jbc.M110.192138
  8. Altenhofer S, Kleikers PW, Radermacher KA, et al.: The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 69: 2327-2343, 2012. https://doi.org/10.1007/s00018-012-1010-9
  9. Kallenborn-Gerhardt W, Schroder K, Geisslinger G, Schmidtko A: NOXious signaling in pain processing. Pharmacol Ther 137: 309-317, 2013. https://doi.org/10.1016/j.pharmthera.2012.11.001
  10. Chen F, Haigh S, Barman S, Fulton DJ: From form to function: the role of Nox4 in the cardiovascular system. Front Physiol 3: 412, 2012.
  11. Park MK, Lee JH, Yang GY, et al.: Peripheral administration of NR2 antagonists attenuates orofacial formalin-induced nociceptive behavior in rats. Prog Neuropsychopharmacol Biol Psychiatry 35: 982-986, 2011. https://doi.org/10.1016/j.pnpbp.2011.01.018
  12. Dionne RA: Pharmacologic advances in orofacial pain: from molecules to medicine. J Dent Educ 65: 1393-1403, 2001.
  13. Kim MJ, Hong BH, Zhang EJ, Ko YK, Lee WH: Antinociceptive effects of intraperitoneal and intrathecal vitamin e in the rat formalin test. Korean J Pain 25: 238-244, 2012. https://doi.org/10.3344/kjp.2012.25.4.238
  14. Mittal N, Joshi R, Hota D, Chakrabarti A: Evaluation of antihyperalgesic effect of curcumin on formalin-induced orofacial pain in rat. Phytother Res 23: 507-512, 2009. https://doi.org/10.1002/ptr.2662
  15. Kim YK, Hyun KY, Joo MH, Jin BM, Lee MK: Effects of samultang in formalin-induced orofacial pain. J Korean Soc Oral Health Sci 1: 117-125, 2013.
  16. Herlaar E, Brown Z: p38 MAPK signalling cascades in inflammatory disease. Mol Med Today 5: 439-447, 1999. https://doi.org/10.1016/S1357-4310(99)01544-0
  17. Kulisz A, Chen N, Chandel NS, Shao Z, Schumacker PT: Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Am J Physiol Lung Cell Mol Physiol 282: L1324-L1329, 2002. https://doi.org/10.1152/ajplung.00326.2001
  18. Su KY, Yu CY, Chen YP, Hua KF, Chen YL: 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of $NF-{\kappa}B$ signaling. BMC Complement Altern Med 14: 21, 2014. https://doi.org/10.1186/1472-6882-14-21
  19. Ma F, Zhang L, Lyons D, Westlund KN: Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve. Mol Brain 5: 44, 2012. https://doi.org/10.1186/1756-6606-5-44
  20. Won KA, Kang YM, Lee MK, et al.: Participation of microglial p38 MAPK in formalin-induced temporomandibular joint nociception in rats. J Orofac Pain 26: 132-141, 2012.
  21. Chiang HM, Chang H, Yao PW, et al. Sesamin reduces acute hepatic injury induced by lead coupled with lipopolysaccharide. J Chin Med Assoc 77: 227-233, 2014. https://doi.org/10.1016/j.jcma.2014.02.010
  22. Hong JW, Yang GE, Kim YB, Eom SH, Lew JH, Kang H: Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models. BMC Complement Altern Med 12: 237, 2012. https://doi.org/10.1186/1472-6882-12-237
  23. Choi HS, Ju JS, Lee HJ, Kim BC, Park JS, Ahn DK: Effects of intracisternal injection of interleukin-6 on nociceptive jaw opening reflex and orofacial formalin test in freely moving rats. Brain Res Bull 59: 365-370, 2003. https://doi.org/10.1016/S0361-9230(02)00931-0
  24. Tall JM, Seeram NP, Zhao C, Nair MG, Meyer RA, Raja SN: Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat. Behav Brain Res 153: 181-188, 2004. https://doi.org/10.1016/j.bbr.2003.11.011
  25. Decendit A, Mamani-Matsuda M, Aumont V, et al.: Malvidin-3-O-b glucoside, major grape anthocyanin, inhibits human macrophage-derived inflammatory mediators and decreases clinical scores in arthritic rats. Biochem Pharmacol 86: 1461-1467, 2013. https://doi.org/10.1016/j.bcp.2013.06.010
  26. Moura RS, Ferreira TS, Lopes AA, et al.: Effects of Euterpe oleracea Mart.(ACAI) extract in acute lung inflammation induced by cigarette smoke in the mouse. Phytomedicine 19: 262-269, 2012. https://doi.org/10.1016/j.phymed.2011.11.004
  27. Xie C, Kang J, Burris R, et al.: Acai juice attenuates atherosclerosis in ApoE deficient mice through antioxidant and anti-inflammatory activities. Atherosclerosis 216: 327-333, 2011. https://doi.org/10.1016/j.atherosclerosis.2011.02.035
  28. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J: NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107: 15565-15570, 2010. https://doi.org/10.1073/pnas.1002178107
  29. Kobayashi H, Chattopadhyay S, Kato K, et al.: MMPs initiate Schwann cell-mediated MBP degradation and mechanical nociception after nerve damage. Mol Cell Neurosci 39: 619-627, 2008. https://doi.org/10.1016/j.mcn.2008.08.008
  30. Ndengele MM, Cuzzocrea S, Esposito E, et al.: Cyclooxygenases 1 and 2 contribute to peroxynitrite-mediated inflammatory pain hypersensitivity. FASEB J 22: 3154-3164, 2008. https://doi.org/10.1096/fj.08-108159
  31. Kallenborn-Gerhardt W, Schröder K, Del Turco D, et al.: NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci 32: 10136-10145, 2012. https://doi.org/10.1523/JNEUROSCI.6227-11.2012
  32. Yang KY, Bae WS, Kim MJ, et al.: Participation of the central p38 and ERK1/2 pathways in IL-1-induced sensitization of nociception in rats. Prog Neuropsychopharmacol b Biol Psychiatry 46: 98-104, 2013. https://doi.org/10.1016/j.pnpbp.2013.07.004
  33. Chen XY, Li K, Light AR, Fu KY: Simvastatin attenuates formalin-induced nociceptive behaviors by inhibiting microglial RhoA and p38 MAPK activation. J Pain 14: 1310-1319, 2013. https://doi.org/10.1016/j.jpain.2013.05.011
  34. Cuadrado A, Nebreda AR: Mechanisms and functions of p38 MAPK signalling. Biochem J 429: 403-417, 2010. https://doi.org/10.1042/BJ20100323