치과용 탄성 인상재를 기반으로 채득된 디지털 모형의 정확성 연구: 3차원 중첩 분석

Accuracy of Digital Impression Made from Different Elastomeric Impression Materials: Three-Dimensional Superimpositional Analysis

  • 김기백 (고려대학교 일반대학원 보건과학과 치의기공전공) ;
  • 정재관 (대전보건대학교 치기공학과) ;
  • 김재홍 (고려대학교 일반대학원 보건과학과 치의기공전공)
  • Kim, Ki-Baek (Department of Dental Laboratory Science and Engineering, College of Public Health Science, Graduate School, Korea University) ;
  • Jung, Jae-Kwan (Department of Dental Laboratory Technology, Daejeon Health Sciences College) ;
  • Kim, Jae-Hong (Department of Dental Laboratory Science and Engineering, College of Public Health Science, Graduate School, Korea University)
  • 투고 : 2014.02.18
  • 심사 : 2014.04.07
  • 발행 : 2014.06.30

초록

본 연구는 임상에서 널리 사용되고 있는 3종류의 탄성 인상재를 치과용 백색광 스캐너로 스캔하여 얻어진 데이터와 석고 지대치 모형과의 차이를 비교분석하였다. 인상재의 물성 차이가 3차원 디지털 모형의 정확성에 어떠한 영향을 미치는지 3차원 중첩 분석법을 통해 평가함으로써 다음과 같은 결과를 얻었다. 석고 지대치 모형과 3종류의 인상재를 토대로 채득된 디지털 모형의 차이를 비교한 결과, HB 그룹이 $9.80{\pm}1.52{\mu}m$ 로 가장 큰 차이를 보였으며, XLB 그룹이 $5.10{\pm}1.45{\mu}m$로 가장 작은 차이를 나타내었다. 음형의 인상체 간의 정확성에 있어서는 측정된 평균값이 통계적으로 유의한 차이를 보였다(p<0.05). Color difference map의 결과에서도 HB 그룹에 비해 XLB 그룹이 오차가 0에 가까운 연두색의 분포가 넓게 나타났기에, 더욱 안정적이며 정확한 디지털 모형 채득이 가능한 탄성 인상재라는 결론을 내릴 수 있다. 아직까지는 음형의 인상체 스캔방식은 표면의 혈흔이나 난반사, 중합 수축 등 좀 더 개선하고 보완해야 할 문제점들이 존재하기 때문에 널리 사용하진 않지만, 석고 모형과 비교하였을 때 전체적인 오차범위가 크지 않기에 임상적으로 허용될만한 수준으로 생각된다.

The purpose of this study was to evaluate the accuracy of digitized elastomeric impression materials of crown abutment, using non-contact white light scanner and virtual three-dimensional superimpositional analysis. The stone models and impressions were digitized white light scanner to create three-dimensional surface models. Stone models were used as CAD reference model (CRM). The resulting point clouds (ASC file) from digitization of impressions using converting software. Discrepancies between the points in the point clouds and CRM were measured by superimpositional software. Mean and standard deviation of values of discrepancies were analyzed by one-way ANOVA and multiple comparison (${\alpha}=0.05$). The mean discrepancy between the impressions for the extra-light body (XLB), light body (LB), and heavy body (HB) group were $5.10{\pm}1.45{\mu}m$, $6.30{\pm}1.87{\mu}m$, $9.80{\pm}1.52{\mu}m$, respectively. The different impression materials affected the digitization of impressions significantly (p<0.05). As a result, digitization of elastomeric impression materials on dental scanner was influenced by material sort.

키워드

참고문헌

  1. Christensen GJ: The state of fixed prosthodontics impressions: room for improvement. J Am Dent Assoc 136: 343-346, 2005. https://doi.org/10.14219/jada.archive.2005.0175
  2. Tinschert J, Natt G, Mautsch W, Spikermann H, Anusavice KJ: Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 26: 367-374, 2001.
  3. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y: A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 28: 44-56, 2009. https://doi.org/10.4012/dmj.28.44
  4. Christensen GJ: Impressions are changing: deciding on conventional, digital or digital plus in-office milling. J Am Dent Assoc 140: 1301-1304, 2009. https://doi.org/10.14219/jada.archive.2009.0054
  5. Luthardt RG, Walter MH, Weber A, Koch R, Rudolph H: Clinical parameters influencing the accuracy of 1- and 2-stage impressions: a randomized controlled trial. Int J Prosthodont 21: 322-327, 2008.
  6. Rodriguez JM, Curtis RV, Bartlett DW: Surface roughness of impression materials and dental stones scanned by noncontacting laser profilometry. Dent Mater 25: 500-505, 2009. https://doi.org/10.1016/j.dental.2008.10.003
  7. Finger W, Ohsawa M: Effect of mixing ratio on properties of elastomeric dental impression materials. Dent Mater 2: 183-186, 1986. https://doi.org/10.1016/S0109-5641(86)80033-1
  8. Shigeto N, Murata H, Hamada T: Evaluation of the methods for dislodging the impression tray affecting the dimensional accuracy of the abutments in complete dental arch cast. J Prothet Dent 61: 54-58, 1989. https://doi.org/10.1016/0022-3913(89)90109-1
  9. Ciesco JN, Malone WF, Sandrik JL, Mazur B: Comparison of elastomeric impression materials used in fixed prosthodontics. J Prothet Dent 45: 89-94, 1981. https://doi.org/10.1016/0022-3913(81)90018-4
  10. Eames WB, Wallace SW, Suway NB, Rogers LB: Accuracy and dimensional stability of elastomeric impression materials. J Prothet Dent 42: 159-162, 1979. https://doi.org/10.1016/0022-3913(79)90166-5
  11. Kim JH, Kim KB: Evaluation of dimensional stability of digital dental model fabricated by impression scanning method. J Dent Hyg Sci 14: 15-21, 2014.
  12. Persson A, Oden A, Andersson M, Sandborgh-Englund G: Digitization of simulated clinical dental impressions: Virtual three-dimensional analysis of exactness. Dent Mater 25: 929-936, 2009. https://doi.org/10.1016/j.dental.2009.01.100
  13. Quaas S, Rudolph H, Luthardt RG: Direct mechanical data acquisition of dental impressions for the manufacturing of CAD/CAM restorations. J Dent 35: 903-908, 2007. https://doi.org/10.1016/j.jdent.2007.08.008
  14. Lee KT, Kim JH, Kim WC, Kim JH: Three-dimensional evaluation on the repeatability and reproducibility of dental scanner based digital models. J Korean Acad Dent Tech 34: 213-220, 2012.
  15. Luthardt RG, Loos R, Quaas S: Accuracy of intraoral data acquisition in comparision to the conventional impression. Int J Comput Dent 8: 283-294, 2005.
  16. Delong R, Pintado MR, Ko CC, Hodges JS, Douglas WH: Factors influencing optical 3D scanning of vinyl polysiloxane impression materials. J Prosthodont 10: 78-85, 2001. https://doi.org/10.1111/j.1532-849X.2001.00078.x
  17. Rekow ED: High-technology innovations and limitations for restorative dentistry. Dent Clin North Am 37: 513-524, 1993.
  18. Beuer F, Schweiger J, Edelhoff D: Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 204: 505-511, 2008. https://doi.org/10.1038/sj.bdj.2008.350
  19. Delong R, Heinzen M, Hodges JS, Ko CC, Douglas WH: Accuracy of a system for creating 3D computer models of dental arches. J Dent Res 90: 434-440, 2003.
  20. Rudolph H, Quaas S, Luthardt RG: Mathcing point clouds: limits and possibilities. Int J Comput Dent 5: 155-164, 2002.
  21. Moldovan O, Luthardt GR, Corcodel N, Rudolph H: Threedimensional fit of CAD/CAM-made zirconia copings. Dent Mater 27: 1273-1278, 2011. https://doi.org/10.1016/j.dental.2011.09.006
  22. Schaefer O, Watts DC, Sigusch BW, Kuepper H, Guentsch A. Marginal and internal fit of pressed lithium disilicate partial crowns in vitro: a three-dimensional analysis of accuracy and reproducibility. Dent Mater 28: 320-326, 2012. https://doi.org/10.1016/j.dental.2011.12.008