DOI QR코드

DOI QR Code

A new method to detect cracks in plate-like structures with though-thickness cracks

  • Xiang, Jiawei (College of Mechanical & Electrical Engineering, Wenzhou University) ;
  • Nackenhorst, Udo (Institute of Mechanics and Computational Mechanics, Leibniz Universitat Hannover) ;
  • Wang, Yanxue (School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology) ;
  • Jiang, Yongying (College of Mechanical & Electrical Engineering, Wenzhou University) ;
  • Gao, Haifeng (College of Mechanical & Electrical Engineering, Wenzhou University) ;
  • He, Yumin (College of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology)
  • Received : 2012.11.30
  • Accepted : 2014.02.15
  • Published : 2014.09.25

Abstract

In this paper, a simple two-step method for structural vibration-based health monitoring for beam-like structures have been extended to plate-like structures with though-thickness cracks. Crack locations and severities of plate-like structures are detected using a hybrid approach. The interval wavelet transform is employed to extract crack singularity locations from mode shape and support vector regression (SVR) is applied to predict crack serviettes form crack severity detection database (the relationship of natural frequencies and crack serviettes) using several natural frequencies as inputs. Of particular interest is the natural frequencies estimation for cracked plate-like structures using Rayleigh quotient. Only the natural frequencies and mode shapes of intact structures are needed to calculate the natural frequencies of cracked plate-like structures using a simple formula. The crack severity detection database can be easily obtained with this formula. The hybrid method is investigated using numerical simulation and its validity of the usage of interval wavelet transform and SVR are addressed.

Keywords

References

  1. Abdel, W.M.M. and De, R.G. (1999), "Damage detection in bridges using modal curvatures, application to a real damage scenario", J. Sound Vib., 226(2), 217-235. https://doi.org/10.1006/jsvi.1999.2295
  2. Alex, J. and Bernhard, S. (2004), "A tutorial on support vector regression", Stat. Comput., 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
  3. Amiri, G.G., Razzaghi, S.A.S. and Bagheri, A. (2011), "Damage detection in plates based on pattern search and Genetic algorithms", Smart Struct. Syst., 7(2), 117-132. https://doi.org/10.12989/sss.2011.7.2.117
  4. Begambre, O. and Laier, J.E. (2009), "A hybrid particle swarm optimization-simplex algorithm (PSOS) for structural crack identification", Adv. Eng. Softw., 40, 883-891. https://doi.org/10.1016/j.advengsoft.2009.01.004
  5. Boduroglu, H. and Erdogan, F. (1983), "Internal and edge cracks in plate of finite width under bending", J. Appl. Mech. - ASME, 50, 620-629.
  6. Chandrashekhar, M. and Ganguli, R. (2009), "Structural damage detection using modal curvature and fuzzy logic", Struct. Health Monit., 8(4), 267-282. https://doi.org/10.1177/1475921708102088
  7. Chasalevris, A.C. and Papadopoulos, C.A. (2006), "Identification of multiple cracks in beams under bending," Mech. Syst. Signal. Pr., 20(7), 1631-1673. https://doi.org/10.1016/j.ymssp.2006.03.008
  8. Chaudhari, T.D. and Maiti, S.K. (2000), "A study of vibration of geometrically segmented beams with and without crack", Int. J. Solids. Struct., 37(5), 761-779. https://doi.org/10.1016/S0020-7683(99)00054-2
  9. Chen, X.F., Yang, S.J., Ma, J.X. and He, Z.J. (2004), "The construction of wavelet finite element and its application", Finite. Elem. Anal. Des., 40(5-6), 541-554. https://doi.org/10.1016/S0168-874X(03)00077-5
  10. Chen, X.F., He, Z.J. and Xiang, J.W. (2005), "Experiments on crack identification in cantilever beams", Exp. Mech. , 45(3), 295-300. https://doi.org/10.1007/BF02427954
  11. Chen, X.F., Zi, Y.Y., Li, B. and He, Z.J. (2006), "Identification of multiple cracks using a dynamic mesh-refinement method", J. Strain Anal. Eng., 41(1), 31-39. https://doi.org/10.1243/030932405X30911
  12. Chen, X.F., Li, B., Xiang, J.W. and He, Z.J. (2009), "Quantitative identification of rotor cracks based on finite element of b-spline wavelet on the interval", Int. J. Wavelets Multiresolution Inf. Process, 7(4), 443-457. https://doi.org/10.1142/S0219691309003021
  13. Chen, X.F., Xiang, J.W., Li, B. and He, Z.J. (2010), "A study of multiscale wavelet-based elements for adaptive finite element analysis", Adv. Eng. Softw., 41(2), 196-205. https://doi.org/10.1016/j.advengsoft.2009.09.008
  14. Chen, X.F., Yang Z.B., Zhang X.W. and He Z.J. (2012), "Modeling of wave propagation in one-dimension structures using B-spline wavelet on interval finite element", Finite. Elem. Anal. Des., 51,1-9. https://doi.org/10.1016/j.finel.2011.10.007
  15. Cohen, A., Daubechies, I. and Vial, P. (1993), "Wavelets on the interval and fast wavelet transform", Appl. Comput. Harmon. A., 1, 54-81. https://doi.org/10.1006/acha.1993.1005
  16. Dimarogonas, A.D. (1996), "Vibration of cracked structures, a state of the art review", Eng. Fract. Mech., 55(5), 831-857. https://doi.org/10.1016/0013-7944(94)00175-8
  17. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification", Shock Vib. Dig., 30(2), 91-105 https://doi.org/10.1177/058310249803000201
  18. Donoho, D., Maleki, A. and Shahram, M. (2012), http,//stat.stanford.edu/wavelab/.
  19. Fan, W. and Qiao, P.Z. (2011), "Vibration-based damage identification methods, a review and comparative study", Struct. Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
  20. Gokdag, H. and Kopmaz, O. (2009), "A new damage detection approach for beam-type structures based on the combination of continuous and discrete wavelet transforms", J. Sound Vib., 324 (3-5), 1158-1180. https://doi.org/10.1016/j.jsv.2009.02.030
  21. Gokdag, H. and Kopmaz, O. (2010), "A new structural damage detection index based on analyzing vibration modes by the wavelet transform", Struct. Eng. Mech., 35(2), 257-260. https://doi.org/10.12989/sem.2010.35.2.257
  22. Gokdag, H. (2011), "Wavelet-based damage detection method for a beam-type structure carrying moving mass", Struct. Eng. Mech., 38(1), 81-97. https://doi.org/10.12989/sem.2011.38.1.081
  23. Gunn, S.R. (1998), Support vector machines for classification and regression, Technique Report, University of Southampton.
  24. Han, J.G., Ren, W.X. and Sun, Z.S. (2005), "Wavelet packet based damage identification of beam structures", Int. J. Solids. Struct., 42(26), 6610-6627. https://doi.org/10.1016/j.ijsolstr.2005.04.031
  25. Han, J.G., Ren, W.X. and Huang Y. (2005), "A multivariable wavelet-based finite element method and its application to thick plates", Finite Elem Anal Des., 41, 821-833. https://doi.org/10.1016/j.finel.2004.11.001
  26. Han, J.G., Ren, W.X. and Huang Y. (2006), "A spline wavelet finite element method in structural mechanics", Int. J. Numer. Meth. Eng., 66, 166-190. https://doi.org/10.1002/nme.1551
  27. He, W.Y. and Ren, W.X. (2012), "Finite element analysis of beam structures based on trigonometric wavelet", Finite. Elem. Anal. Des., 51, 59-66. https://doi.org/10.1016/j.finel.2011.11.005
  28. Isa, D. and Rajkumar, R. (2009), "Pipeline defect prediction using support vector machines", Appl. Artif. Intell., 23(8), 758-771. https://doi.org/10.1080/08839510903210589
  29. Jiang, X. and Ma, Z.J. (2012), "Crack detection from the slope of the mode shape using complex continuous wavelet transform", Comput.-Aided Civil Infrastruct. Eng., 27(3), 187-201. https://doi.org/10.1111/j.1467-8667.2011.00734.x
  30. Jaishi, B. and Ren, W.X.(2006), "Damage detection by finite element model updating using modal flexibility residual ", J. Sound Vib., 290(1-2), 369-387. https://doi.org/10.1016/j.jsv.2005.04.006
  31. Kannappan, L. and Shankar, K. (2007), "Non destructive inspection of plates using frequency measurements", Proceedings of the 5th Australasian Congress on Applied Mechanics, ACAM2007, Brisbane, Australia.
  32. Kim, J.T., Park, J.H., Yoon, H.S. and Yi, J.H. (2007), "Vibration-based damage detection in beams using genetic algorithm", Smart Struct. Syst., 3(3), 263-280. https://doi.org/10.12989/sss.2007.3.3.263
  33. Kim, J.T., Park, J.H., Koo, K.Y. and Lee, J.J. (2008), "Acceleration-based neural networks algorithm for damage detection in structures", Smart Struct. Syst., 4(5), 583-603. https://doi.org/10.12989/sss.2008.4.5.583
  34. Kobayashi, A.S. (1986), Linear elastic fracture mechanics, vol. 2. Netherlands, Else-vier science publishers.
  35. Koo, K.Y., Lee, J.J., Yun, C.B. and Kim, J.T. (2008), "Damage detection in beam-like structures using deflections obtained by modal flexibility matrices", Smart Struct. Syst., 4(5), 605-628. https://doi.org/10.12989/sss.2008.4.5.605
  36. Lele, S.P. and Maiti, S.K. (2002), "Modeling of transverse vibration of short beams for crack detection and measurement of crack extension", J. Sound. Vib., 257(3), 559-583. https://doi.org/10.1006/jsvi.2002.5059
  37. Li, B., Chen, X.F. and He, Z.J. (2005), "Detection of crack location and size in structures using wavelet finite element methods", J. Sound. Vib., 285(4-5), 767-782. https://doi.org/10.1016/j.jsv.2004.08.040
  38. Li, B. and He, Z.J. (2011), "Frequency-based crack identification for static beam with rectangular cross-section", J. Vibroeng., 13(3), 477-486.
  39. Lin, Y.Q., Ren, W.X. and Fang, S.E. (2011), "Structural damage detection based on stochastic subspace identification and statistical pattern recognition, II. Experimental validation under varying temperature", Smart Mater. Struct., 20(11), 115010. https://doi.org/10.1088/0964-1726/20/11/115010
  40. Maiti, S.K. and Patil, D.P. (2004), "A method of analysis for detection of multiple cracks in beams based on vibration", Adv. Vib. Eng., 3(4), 348-369.
  41. Moaveni, S. (2003), Finite element analysis-theory and application with ANSYS, Prentice-Hall, New Jersey.
  42. Montalvao, D., Maia, N.M.M. and Ribeiro, A.M.R. (2006), "A review of vibration-based structural health monitoring with special emphasis on composite materials", Shock Vib. Dig., 38(4), 1-30.
  43. Nandwana, B.P. and Maiti, S.K. (1997), "Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies", J. Sound. Vib., 203(3), 435-446. https://doi.org/10.1006/jsvi.1996.0856
  44. Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145 (2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
  45. Patil, D.P. and Maiti, S.K. (2003), "Detection of multiple cracks using frequency measurements", Eng. Fract. Mech., 70(12), 1553-1572. https://doi.org/10.1016/S0013-7944(02)00121-2
  46. Patil, D.P. and Maiti, S.K. (2005), "Experimental verification of a method of detection of multiple cracks in beams based on frequency measurements", J. Sound Vib., 281(1-2), 439-451. https://doi.org/10.1016/j.jsv.2004.03.035
  47. Qiao, P.Z., Lu, K., Lestari, W. and Wang, J.L. (2007), "Curvature mode shape-based damage detection in composite laminated plates", Compos. Struct., 80(3), 409-428. https://doi.org/10.1016/j.compstruct.2006.05.026
  48. Rajasekaran, S. and Varghese, S.P. (2005), "damage detection in beams and plates using wavelet transforms", Comput. Concrete, 2(6), 481-498. https://doi.org/10.12989/cac.2005.2.6.481
  49. Ren, W.X. and De, R.G. (2002a), "Structural damage identification using modal data. I, Simulation verification", J. Struct. Eng.- ASCE, 128(1), 87-95. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(87)
  50. Ren, W.X. and De, R.G. (2002b), "Structural damage identification using modal data. II, Test verification", J. Struct. Eng. - ASCE, 128(1), 96-104. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(96)
  51. Ren, W.X., Sun, Z.S. (2008), "Structural damage identification by using wavelet entropy", Eng. Struct., 30(10), 2840-2849. https://doi.org/10.1016/j.engstruct.2008.03.013
  52. Ren, W.X. and Sun, Z.S. (2010), "Finite element model updating in structural dynamics by using the response surface method ", Eng. Struct., 32(8), 2455-2465. https://doi.org/10.1016/j.engstruct.2010.04.019
  53. Ren, W.X., Lin, Y.Q. and Fang, S.E. (2011), "Structural damage detection based on stochastic subspace identification and statistical pattern recognition, I. Theory", Smart Mater. Struct., 20(11), 115009. https://doi.org/10.1088/0964-1726/20/11/115009
  54. Sampaio, R.P.C., Maia, N.M.M. and Silva, J.M.M. (1999), "Damage detection using the frequency-response-function curvature method", J. Sound Vib., 226(5), 1029-1042. https://doi.org/10.1006/jsvi.1999.2340
  55. Sekhar, A.S. (2008), "Multiple Cracks Effects and Identification", Mech. Syst. Signal Pr., 22(4), 845-878. https://doi.org/10.1016/j.ymssp.2007.11.008
  56. Strang, G. and Nguyen, T. (1996), Wavelets and filter banks. London, Wellesley-Cambridge Press.
  57. Tada, H., Paris, P.C., Irwin G.R. (2000), The stress analysis of cracks handbook (3rd Ed.), New York, ASME Press.
  58. Tomaszewska, A. (2010), "Influence of statistical errors on damage detection based on structural flexibility and mode shape curvature", Comput. Struct., 88(3-4), 154-164. https://doi.org/10.1016/j.compstruc.2009.08.017
  59. Timoshenko, S., Young, D.H. and Weaver, W. (1974), Vibration problems in engineering (4th Ed.), London, John Wiley and Sons.
  60. Wahab, M.M.A. (2001), "Effect of modal curvatures on damage detection using model updating", Mech. Syst. Signal Pr., 15(2), 439-445. https://doi.org/10.1006/mssp.2000.1340
  61. Wilson, W.K. and Thompson, D.G. (1971), "On the finite element method for calculating stress intensity factors for cracked plates in bending", Eng. Fract. Mech., 3(2), 97-102. https://doi.org/10.1016/0013-7944(71)90001-4
  62. Wu, J.H., Liu, A.Q. and Chen, H.L. (2007), "Exact solutions for free-vibration analysis of rectangular plates using Bessel functions", J. Appl. Mech. - ASME, 74, 1247-1251. https://doi.org/10.1115/1.2744043
  63. Worden, K. and Lane, A.J. (2001), "Damage identification using support vector machines", Smart Mater. Struct., 10 (3), 540-547. https://doi.org/10.1088/0964-1726/10/3/317
  64. Xiang, J.W., Chen, X.F., He, Z.J. and Zhang, Y.H. (2007a), "The construction of 1D wavelet finite elements for structural analysis", Comput. Mech., 40(2), 325-339. https://doi.org/10.1007/s00466-006-0102-5
  65. Xiang, J.W., Chen, X.F., Mo, Q.Y. and He, Z.J. (2007b), "Identification of crack in a rotor system based on wavelet finite element method", Finite. Elem. Anal. Des., 43(14), 1068-1081. https://doi.org/10.1016/j.finel.2007.07.001
  66. Xiang, J.W., Matsumoto, T., Wang, Y.X. and Jiang, Z.S. (2011), "A hybrid of interval wavelets and wavelet finite element model for damage detection in structures", CMES-Comput. Model. Eng. Sci., 81(3-4), 269-294.
  67. Xiang, J.W., Matsumoto, T., Wang, Y.X. and Jiang, Z.S. (2012a), "A simple method to detect cracks in beam-like structures", Smart Struct. Syst., 9(4), 335-353. https://doi.org/10.12989/sss.2012.9.4.335
  68. Xiang, J.W. and Liang M. (2012b), "A two-step approach to multi-damage detection for plate structures", Eng. Fract. Mech., 91, 73-86. https://doi.org/10.1016/j.engfracmech.2012.04.028
  69. Yun, G.J., Ogorzalek, K.A., Dyke, S.J. and Song, W. (2009), "A two-stage damage detection approach based on subset selection and genetic algorithms", Smart Struct. Syst., 5(1), 1-21. https://doi.org/10.12989/sss.2009.5.1.001
  70. Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), The finite element method (6th Ed.), Elsevier Press, London.

Cited by

  1. Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.239
  2. Scale-wavenumber domain filtering method for curvature modal damage detection vol.154, 2016, https://doi.org/10.1016/j.compstruct.2016.07.074
  3. Crack detection of structures using modified extreme learning machine (MELM) vol.25, pp.7, 2017, https://doi.org/10.1080/17415977.2016.1212026
  4. A two-stage damage detection method for truss structures using a modal residual vector based indicator and differential evolution algorithm vol.17, pp.2, 2016, https://doi.org/10.12989/sss.2016.17.2.347
  5. Temperature Effect on Mechanical Properties and Damage Identification of Concrete Structure vol.2014, 2014, https://doi.org/10.1155/2014/191360
  6. A hybrid multiple damages detection method for plate structures vol.60, pp.5, 2017, https://doi.org/10.1007/s11431-016-9002-0
  7. The Fourier spectral Poincare map method for damage detection via single type of measurement vol.113, 2018, https://doi.org/10.1016/j.measurement.2017.08.023
  8. Damage identification in composite laminates using a hybrid method with wavelet transform and finite element model updating 2017, https://doi.org/10.1177/0954406217692844
  9. A novel method to aging state recognition of viscoelastic sandwich structures vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1183
  10. Experimental investigation of damage detection in plate-like structure using combined energetic approaches pp.2041-2983, 2018, https://doi.org/10.1177/0954406218771102
  11. Damage identification of a 2D frame structure using two-stage approach vol.32, pp.3, 2018, https://doi.org/10.1007/s12206-018-0215-8
  12. Damage detection in beam through change in measured frequency and undamaged curvature mode shape vol.27, pp.1, 2019, https://doi.org/10.1080/17415977.2018.1442834
  13. Detecting width-wise partial delamination in the composite beam using generalized fractal dimension vol.19, pp.1, 2017, https://doi.org/10.12989/sss.2017.19.1.091
  14. Mechanical parameters detection in stepped shafts using the FEM based IET vol.20, pp.4, 2014, https://doi.org/10.12989/sss.2017.20.4.473
  15. Damage identification in laminated composite plates using a new multi-step approach vol.29, pp.1, 2018, https://doi.org/10.12989/scs.2018.29.1.139
  16. A damage localization method based on the singular value decomposition (SVD) for plates vol.22, pp.5, 2018, https://doi.org/10.12989/sss.2018.22.5.621
  17. Damage detection of shear buildings using frequency-change-ratio and model updating algorithm vol.23, pp.2, 2019, https://doi.org/10.12989/sss.2019.23.2.107
  18. Study on the Measurement Method of the Crack Local Flexibility of the Beam Structure vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/8816884
  19. Method using XFEM and SVR to predict the fatigue life of plate-like structures vol.73, pp.4, 2014, https://doi.org/10.12989/sem.2020.73.4.455
  20. Sparse reconstruction of guided wavefield from limited measurements using compressed sensing vol.25, pp.3, 2014, https://doi.org/10.12989/sss.2020.25.3.369