Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Bakir, S. (2006), "Distribution-free quality control charts based on signed rank-like statistics", Commun. Stat. - Theor. M., 35, 743-757. https://doi.org/10.1080/03610920500498907
- Bajgier, S.M. (1992), "The use of bootstrapping to construct limits on control charts", Proceedings of the Decision Science Institute, San Diego, CA.
- Chakraborti, S., Van der Laan, P. and Bakir, S.T. (2001), "Nonparametric control chart: an overview and some results", J. Quality Technol., 33(3), 304-315.
- Chou, Y.M., Mason, R.L. and Young, J.C. (2001), "The control chart for individual observations from a multivariate non-normal distribution", Commun. Stat. - Simul. C., 30(8-9), 1937-1949.
- Cong, F., Chen, J., and Dong, G. (2010), "Research on the order selection of the autoregressive modelling for rolling bearing diagnosis", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 224(10), 2289-2297. https://doi.org/10.1243/09544062JMES1958
- Dyer, D. and Stewart, R.M., (1978), "Detection of rolling element bearing damage by statistical vibration analysis", J. Vib. Acoust., 100(2), 229-235.
- Efron, B. (1979), "Bootstrap method: another look at jackknife", Ann. Stat., 7(1), 1-26. https://doi.org/10.1214/aos/1176344552
- Fan, J. (1996), "Test of significance based on wavelet thresholding and Neyman's truncation", J. Am. Stat. Assoc., 91, 674-688. https://doi.org/10.1080/01621459.1996.10476936
- Ganesan, R., Das, T.K. and Venkataraman, V. (2004), "Wavelet-based multiscale statistical process monitoring: A literature review", IIE Trans., 36, 787-806. https://doi.org/10.1080/07408170490473060
- Goswami, J.C. and Chan, A.K. (1999), Fundamentals of wavelets: theory, algorithms, and applications, Wiley, New York, NY.
- Hall, P., Poskitt, D.S. and Presnell, D. (2001), "Functional data-analytic approach to signal discrimination", Technometrics, 43(1), 1-9. https://doi.org/10.1198/00401700152404273
- Hotelling, H. (1947), Multivariate quality control, in techniques of statistical analysis, (Eds. Eisenhart, C., Hastay, M.W. and Wills, W.A. ), McGraw-Hill, New York, NY.
- Jardine, A.K.S., Lin D. and Banjevic, D. (2006), "A review on machinery diagnostics and prognostics implementing condition-based maintenance", Mech. Syst. Signal Pr., 20(7), 1483-1510. https://doi.org/10.1016/j.ymssp.2005.09.012
- Jeong, M.K., Chen, D. and Lu, J.C. (2003), "Thresholoded scalogram and its applications in process fault detection", Appl. Stoch. Model. Bus., 19, 231-244. https://doi.org/10.1002/asmb.495
- Jones, L.A. and Woodall, W.H. (1998), "The performance of bootstrap control charts", J. Quality Technol., 30(4), 362-375.
- Jung, U., Jeong, M.K. and Lu, J.C. (2006), "A vertical-energy-thresholding procedure for data reduction with multiple complex curves", IEEE T. Syst. Man. Cy. - B, 36(5), 1128-1138. https://doi.org/10.1109/TSMCB.2006.874681
- Jung, U. and Koh, B.H. (2009), "Structural damage localization using wavelet-based silhouette statistics", J. Sound Vib., 321, 590-604. https://doi.org/10.1016/j.jsv.2008.10.016
- Kim, S.H., Alexopoulos, C., Tsui, K.L. and Wilson, J.R. (2007), "A distribution-free tabular CUSUM chart for autocorrelated data", IIE Trans., 39(3), 317-330. https://doi.org/10.1080/07408170600743946
- Koh, B.H., Nagarajaiah, S. and Phan, M.Q. (2008), "Reconstructing structural changes in a dynamic system from experimentally identified state-space models", J. Mech. Sci. Technol., 22(1), 103-112. https://doi.org/10.1007/s12206-007-1012-y
- Kresta, J., MacGregor, J.F. and Marlin, T.E. (1991), "Multivariate statistical monitoring of process operating performance", Can J. Chem. En., 69(1), 35-47. https://doi.org/10.1002/cjce.5450690105
- Ku, W., Storer, R.H. and Georgakis, C. (1995), "Disturbance detection and isolation by dynamic principal component analysis", Chemomet. Intell. Lab., 30(1), 179-196. https://doi.org/10.1016/0169-7439(95)00076-3
- Law, S.S., Li, X.Y., Zhu, X.Q. and Chan, S.L. (2005), "Structural damage detection from wavelet packet sensitivity", Eng. Struct., 27, 1339-1348. https://doi.org/10.1016/j.engstruct.2005.03.014
- Lei, Y., He, Z. and Zi, Y. (2011), "EEMD method and WNN for fault diagnosis of locomotive roller bearings", Expert Syst. Appl., 38(6), 7334-7341. https://doi.org/10.1016/j.eswa.2010.12.095
- Li, H., Deng, X. and Dai, H. (2007), "Structural damage detection using the combination method of EMD and wavelet analysis", Mech. Syst. Signal Pr., 21, 298-306. https://doi.org/10.1016/j.ymssp.2006.05.001
- Li, Z., Xia, S., Wang, J. and Su, X. (2006), "Damage detection of cracked beams based on wavelet transform", Int. J. Impact Eng., 32, 1190-1200. https://doi.org/10.1016/j.ijimpeng.2004.09.012
- Lin, J. and Zhang, A. (2005), "Fault feature separation using wavelet-ICA filter", NDT&E Int., 38(6), 421-427. https://doi.org/10.1016/j.ndteint.2004.11.005
- Lio, Y.L. and Park, C. (2008), "A bootstrap control chart for Birnbaum-Saunders percentiles", Qual. Reliab. Eng. Int., 24, 585-600. https://doi.org/10.1002/qre.924
- Liu, R.Y. and Tang, J. (1996), "Control charts for dependent and independent measurements based on bootstrap methods", J. Am. Stat. Assoc., 91, 1694-1700. https://doi.org/10.1080/01621459.1996.10476740
- Liu, R.Y., Singh, K. and Teng, J.H. (2004), "DDMA-charts: nonparametric multivariate moving average control charts based on data depth", Allgemeines Stat. Archiv., 88(2), 235-258. https://doi.org/10.1007/s101820400170
- MacGregor, J.F. and Kourti, T. (1995), "Statistical process control of multivariate processes", Control Eng. Pract., 3(3), 403-414. https://doi.org/10.1016/0967-0661(95)00014-L
- Mallat, S.G. (1989), A wavelet tour of signal processing, Academic Press, San Diego.
- McFadden, P.D. and Smith, J.D. (1984), "Model for the vibration produced by a single point defect in a rolling element bearing", J. Sound Vib., 96(1), 69-82. https://doi.org/10.1016/0022-460X(84)90595-9
- Mason, R.L. and Young, J.C. (2002), Multivariate statistical process control with industrial applications, ASA/SIAM: Philadelphia, PA.
- Peng, Z., Chu, F. and He, Y. (2002), "Vibration signal analysis and feature extraction based on reassigned wavelet scalogram", J. Sound Vib., 253(5), 1087-1100. https://doi.org/10.1006/jsvi.2001.4085
-
Phaladiganon, P., Kim, S.B., Chen, V.C.P., Baek, J.G. and Park, S.K. (2011), "Bootstrap-based
$T^{2}$ multivariate control charts", Commun. Stat. - Simul. C., 40, 645-662. https://doi.org/10.1080/03610918.2010.549989 - Polansky, A.M. (2005), "A general framework for constructing control charts", Qual. Reliab. Eng. Int., 21, 633-653. https://doi.org/10.1002/qre.680
- Prabhakar, S., Mohanty, A.R. and Sekhar, A.S. (2002), "Application of discrete wavelet transform for detection of ball bearing race faults", Tribol. Int., 35(12), 793-800. https://doi.org/10.1016/S0301-679X(02)00063-4
- Qiu, P. (2008), "Distribution-free multivariate process control based on log-linear modeling", IIE Trans., 40(7), 664-677. https://doi.org/10.1080/07408170701744843
- Randall, R.B. and Antoni, J. (2011), "Rolling element bearing diagnostics - a tutorial", Mech. Syst. Signal Pr., 25(2), 485-520. https://doi.org/10.1016/j.ymssp.2010.07.017
- Rioul, O. and Vetterli, M. (1991), "Wavelets and signal processing", IEEE Signal Proc. Mag., 14-38.
- Royston, J.P. (1983), "Sone techniques for assessing multivariate normality based on the Shapiro-Wilk W", Appl. Stat., 32(2), 121-133. https://doi.org/10.2307/2347291
- Scargle, J.D. (1997), Wavelet methods in astronomical time series analysis, Application of Time Series Analysis in Astronomy and Meteorology, Chapman & Hall, New York.
- Seber, G.A.F. (1984), Multivariate observations, Wiley, New York.
- Seppala, T., Moskowitz, H., Plante, R. and Tang, J. (1995), "Statistical process control via the subgroup bootstrap", J. Qual. Technol., 27, 139-153.
- Sohn, H., Czarnecki, J.J. and Farrar, C.R. (2000), "Structural health monitoring using statistical process control", J. Struct. Eng. - ASCE, 126, 1356-1363. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1356)
- Stoumbos, Z.G., Reynolds, M.R., Ryan, T.P. and Woodall, W.H. (2000), "The state of statistical process control as we proceed into the 21st century", J. Am. Stat. Assoc., 95, 992-998. https://doi.org/10.1080/01621459.2000.10474292
- Sukchotrat, T., Kim, S.B. and Tsung, F. (2010), "One-class classification-based control chart for multivariate process monitoring", IIE Trans., 42, 107-120.
- Vidakovic, B. (1999), Statistical modeling by wavelets, John Wiley & Sons.
- Wang, W. and Wong A.K. (2002), "Autoregressive model-based gear fault diagnosis", J. Vib. Acoust., 124, 172-179. https://doi.org/10.1115/1.1456905
- Woodall, W.H. (2000), "Controversies and contradictions in statistical process control", J. Qual. Technol., 32(4), 341-350.
- Woodall, W.H. and Montgomery, D.C. (1999), "Research issues and ideas in statistical process control", J. Qual. Technol., 31(4), 376-386.
- Yu, Y., Yu, D. and Junsheng, C. (2006), "A roller bearing fault diagnosis method based on EMD energy entropy and ANN", J. Sound Vib., 294(1-2), 269-277. https://doi.org/10.1016/j.jsv.2005.11.002
Cited by
- Sparse abnormality detection based on variable selection for spatially correlated multivariate process pp.1476-9360, 2018, https://doi.org/10.1080/01605682.2018.1489352
- Wavelet-like convolutional neural network structure for time-series data classification vol.22, pp.2, 2018, https://doi.org/10.12989/sss.2018.22.2.175
- Failure prediction of a motor-driven gearbox in a pulverizer under external noise and disturbance vol.22, pp.2, 2014, https://doi.org/10.12989/sss.2018.22.2.185
- Application of compressive sensing and variance considered machine to condition monitoring vol.22, pp.2, 2014, https://doi.org/10.12989/sss.2018.22.2.231
- Modification of acceleration signal to improve classification performance of valve defects in a linear compressor vol.23, pp.1, 2014, https://doi.org/10.12989/sss.2019.23.1.071
- Defect classification of refrigerant compressor using variance estimation of the transfer function between pressure pulsation and shell acceleration vol.25, pp.2, 2014, https://doi.org/10.12989/sss.2020.25.2.255