Acknowledgement
Supported by : Hong Kong Polytechnic University
References
- Amaratunga, K. and Sudarshan, R. (2006), "Multi-resolution modeling with operator-customized wavelets derived from finite elements", Comput. Method Appl. M., 195, 2509-2532. https://doi.org/10.1016/j.cma.2005.05.012
- Averbuch, A.Z., Zheludev, V.A. and Cohen, T. (2007), "Multiwavelet frames in signal space originated from Hermite splines", IEEE T. Signal Proces., 55(3), 797-808. https://doi.org/10.1109/TSP.2006.887569
- Bakhary, N., Hao, H. and Deeks, A.J. (2010), "Structure damage detection using neural network with multi-stage substructuring", Adv. Struct. Eng., 13(1), 95-110. https://doi.org/10.1260/1369-4332.13.1.95
- Balageas, D., Fritzen, C.P. and Guemes, A. (2006), Structural health monitoring, ISTE USA, Newport Beach, CA, USA.
- Chen, W.H. and Wu, C.W. (1995), "Spline wavelets element method for frame structures vibration", Comput. Mech., 16, 1-2l. https://doi.org/10.1007/BF00369880
- Chen, X.F., Zi, Y.Y., Li, B. and He, Z.J. (2006), "Identification of multiple cracks using a dynamic mesh-refinement method", J. Stain Anal. Eng., 41, 31-39. https://doi.org/10.1243/030932405X30911
- Chui, C.K. (2009), An introduction to wavelets, Posts and Telecom Press, Beijing, China.
- Clough, W. and Penzien, J. (1993), Dynamics of structures (3rd Ed.), McGraw-Hill, New York.
- Cornwell, P., Doebling, S.W. and Farrar, C.R. (1999), "Application of the strain energy damage detection method to plate-like structures", J Sound Vib., 224 (2), 359-374. https://doi.org/10.1006/jsvi.1999.2163
- Ding, Y.L., Li, A.Q., Du, D.S. and Liu, T. (2010), "Multi-scale damage analysis for a steel box girder of a long-span cable-stayed bridge", Struct. Infrastruct. E., 6(6), 725-739. https://doi.org/10.1080/15732470802187680
- Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), Damage identification and health monitoring of structural mechanical systems from changes in their vibration characteristics: a literature review, Report No. LA-13070-MS, Los Alamos National Laboratory, Los Alamos, NM, USA.
- Fan, W. and Qiao, P.Z. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
- Fox, R.L. and Kapoor, M.P. (1968), "Rate of change of eigenvalues and eigenvectors", AIAA J., 6(12), 2426-2429. https://doi.org/10.2514/3.5008
- Guan, H. and Karbhari, V.M. (2008), "Improved damage detection method based on element modal strain damage index using sparse measurement", J. Sound Vib., 309(3-5), 465-494. https://doi.org/10.1016/j.jsv.2007.07.060
- Han, J.G., Ren, W.X. and Huang, Y. (2005), "A multivariable wavelet based finite element method and its application to thick plates", Finite Elem. Anal. Des., 41, 821-833. https://doi.org/10.1016/j.finel.2004.11.001
- Han, J.G., Ren, W.X. and Huang, Y. (2006), "A spline wavelet finite-element method in structural mechanics", Int. J. Numer. Meth. Eng., 66, 166-190. https://doi.org/10.1002/nme.1551
- He, W.Y., Ren, W.X. and Yang, Z.J. (2012) "Computation of plane crack stress intensity factors using trigonometric wavelet finite element methods", Fatigue Fract. Eng. M., 35, 732-741. https://doi.org/10.1111/j.1460-2695.2011.01626.x
- He, W.Y. and Ren, W.X. (2012), "Finite element analysis of beam structures based on trigonometric wavelet", Finite Elem. Anal. Des., 51, 59-66. https://doi.org/10.1016/j.finel.2011.11.005
- He, W.Y. and Ren, W.X. (2013a), "Adaptive trigonometric hermite wavelet finite element method for structural analysis", Int. J. Struct. Stab. Dy., 1, 1350007.
- He, W.Y. and Ren, W.X. (2013b), "Trigonometric wavelet-based method for elastic thin plate analysis", App. Math. Model., 37, 1607-1617. https://doi.org/10.1016/j.apm.2012.04.030
- He, W.Y. and Zhu, S. (2013), "Progressive damage detection based on multi-scale wavelet finite element model: numerical study", Comput. Struct., 125, 177-186. https://doi.org/10.1016/j.compstruc.2013.05.001
- Ko, J., Kurdila, A.J. and Pilant, M.S. (1995), "A class of finite element methods based on orthonormal, compactly supported wavelets", Comput. Mech., 16, 235-244. https://doi.org/10.1007/BF00369868
- Kim, H.M. and Bartkowicz, T.J. (1997), "A two-step structural damage detection approach with limited instrumentation", J. Vib. Acoust., 119(2), 258-264. https://doi.org/10.1115/1.2889712
- Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32(1), 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
- Li, B., Chen, X.F., Ma, J.X. and He, Z.J. (2005), "Detection of crack location and size in structures using wavelet finite element methods", J. Sound Vib., 285, 767-782. https://doi.org/10.1016/j.jsv.2004.08.040
- Li, Z.X., Chan, T.H.T., Yu, Y. and Sun, Z.H. (2009), "Concurrent multi-scale modeling of civil infrastructures for analyses on structural deterioration, Part I: Modeling methodology and strategy", Finite Elem. Anal. Des., 45, 782-794. https://doi.org/10.1016/j.finel.2009.06.013
- Mallat, S. (1988), Multi-resolution representation and wavelets, Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA.
- Perera, R. and Ruiz, A. (2008), "A multistage FE updating procedure for damage identification in large-scale structures based on multi-objective evolutionary optimization", Mech. Syst. Signal Pr., 22, 970-991. https://doi.org/10.1016/j.ymssp.2007.10.004
- Ren, W.X. and De Roeck, G. (2002), "Discussion of "Structural Damage Detection from Modal Strain Energy Change" by z. Y. Shi, S. S. Law, and L. M. Zhang", J. Eng. Mech. - ASCE, 128, 376-377. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:3(376)
- Redjienski, M., Krawczuk, M. and Palacz, M. (2011), "Improvement of damage detection methods based on experimental modal parameters", Mech. Syst. Signal Pr., 25(6), 2169-2190. https://doi.org/10.1016/j.ymssp.2011.01.007
- Shi, Z.Y. and Law, S.S. (1998), "Structural damage localization from modal strain energy change", J. Sound Vib., 218 (5), 825-844. https://doi.org/10.1006/jsvi.1998.1878
- Shi, Z.Y., Law, S.S. and Zhang, L.M. (2000), "Structural damage detection from modal strain energy change", J. Eng. Mech. - ASCE, 126 (12), 1216-1223. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1216)
- Shi, S.Y., Law, S.S. and Zhang L.M. (2002), "Improved damage quantification from elemental modal strain energy change", J. Eng. Mech.- ASCE, 128(5), 521-529. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:5(521)
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, B.R. (2004), A review of structural health monitoring literature 1996-2001, Report No. LA-13976-MS, Los Alamos National Laboratory, Los Alamos, NM, USA.
- Sudarshan, R. and Amaratunga, K. (2003), "Hierarchical solution of eigenvalue problems using finite element multi-wavelets", Proceedings of the VII International Conference on Computational Plasticity (COMPLAS 2003), Barcelona.
- Sweldens, W. (1996), "The lifting scheme: a custom-design construction of biorthogonal wavelets", Appl Comput Harmon A., 3, 186-200. https://doi.org/10.1006/acha.1996.0015
- Wang, Y.M., Chen, X.F., He, Y.M. and He, Z.J. (2011), "The construction of finite element multi -wavelets for adaptive structural analysis", Int. J. Numer. Meth. Bio., 27, 562-584. https://doi.org/10.1002/cnm.1320
- Xiang, J.W., Chen, X.F., He, Y.M. and He, Z.J. (2006). "Identification of crack in a beam based on finite element method of B-spline wavelet on the interval", J. Sound Vib., 296,1046-1052. https://doi.org/10.1016/j.jsv.2006.02.019
- Xiang, J.W. and Liang, M. (2011), "Multiple damage detection method for beams based on multi-scale elements using Hermite cubic spline wavelet", Comp Model Eng., 73(3), 267-298.
- Yan, W.J., Huang, T.L. and Ren, W.X. (2010), "Damage detection method based on element modal strain energy sensitivity", Adv. Struct. Eng., 13, 1075-1088. https://doi.org/10.1260/1369-4332.13.6.1075
- Yan, W.J. and Ren, W.X. (2012), "Statistic structural damage detection based on the closed-form of element modal strain energy sensitivity", Mech. Syst. Signal Pr., 28, 183-194. https://doi.org/10.1016/j.ymssp.2011.04.011
- Zienkiewicz, O.C. and Taylor, R.L. (1961), The finite element method (4th Ed.), McGraw-Hill Book Company, London.
Cited by
- A Multi-Scale Wavelet Finite Element Model for Damage Detection of Beams Under a Moving Load 2018, https://doi.org/10.1142/S0219455418500785
- Wavelet-based multi-scale finite element modeling and modal identification for structural damage detection vol.20, pp.8, 2017, https://doi.org/10.1177/1369433216687566
- Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.239
- Structural damage detection through longitudinal wave propagation using spectral finite element method vol.12, pp.1, 2014, https://doi.org/10.12989/gae.2017.12.1.161
- Modification of ground motions using wavelet transform and VPS algorithm vol.12, pp.4, 2017, https://doi.org/10.12989/eas.2017.12.4.389
- Wavelet-based automatic identification method of axle distribution information vol.63, pp.6, 2014, https://doi.org/10.12989/sem.2017.63.6.761
- Progressive damage detection of thin plate structures using wavelet finite element model updating vol.22, pp.3, 2014, https://doi.org/10.12989/sss.2018.22.3.277
- A wavelet-based despiking algorithm for large data of structural health monitoring vol.14, pp.12, 2018, https://doi.org/10.1177/1550147718819095