DOI QR코드

DOI QR Code

Electromechanical analysis of 2-2 cement-based piezoelectric transducers in series electrically

  • Wang, Jianjun (School of Civil Engineering, Beijing Jiaotong University) ;
  • Shi, Zhifei (School of Civil Engineering, Beijing Jiaotong University)
  • 투고 : 2012.12.13
  • 심사 : 2013.06.29
  • 발행 : 2014.09.25

초록

This paper aims to present the analytical solutions of 2-2 cement based piezoelectric transducers in series electrically based on the theory of piezo-elastic dynamics. The solutions of two different kinds of 2-2 cement based piezoelectric transducers under external harmonic load are obtained by using the displacement method. The effects of electrical connection of piezoelectric layers, loading frequency, thickness and distance of piezoelectric layers on the characteristics of the transducers are discussed. Comparisons with other related experimental investigations are also given, and good agreement is found. The proposed 2-2 cement based piezoelectric transducers have a great potential application in monitoring structural health in civil engineering and capturing mechanical energy or monitoring train-running safety in railway system and traffic safety in road system.

키워드

참고문헌

  1. Aizawa, S., Kakizawa, T. and Higasino, M. (1998), "Case studies of smart materials for civil structures", Smart Mater. Struct., 7(5), 617-626. https://doi.org/10.1088/0964-1726/7/5/006
  2. Bian, Z.G., Lim, C.W. and Chen, W.Q. (2006), "On functionally graded beams with integrated surface piezoelectric layers", Compos. Struct., 72(3), 339-351. https://doi.org/10.1016/j.compstruct.2005.01.005
  3. Carbonari, R.C., Silva, E.C.N. and Paulino, G.H. (2006), "Design of functionally graded piezoelectric actuators using topology optimization", Proceedings of the 9th International Conference on Multiscale and Functionally Graded Materials, Oahu, HI, USA, October.
  4. Carbonari, R.C., Silva, E.C.N. and Paulino, G.H. (2007), "Topology optimization design of functionally graded bimorph-type piezoelectric actuators", Smart Mater. Struct., 16(6), 2605-2620. https://doi.org/10.1088/0964-1726/16/6/065
  5. Chaipanich, A. (2007), "Effect of PZT particle size on dielectric and piezoelectric properties of PZT-cement composites", Curr. Appl. Phys., 7(5), 574-577. https://doi.org/10.1016/j.cap.2006.11.036
  6. Dong, B.Q. and Li, Z.J. (2005), "Cement-based piezoelectric ceramic smart composites", Compos. Sci. Technol., 65(9), 1363-1371. https://doi.org/10.1016/j.compscitech.2004.12.006
  7. Feenstra, J., Granstrom, J. and Sodano, H.A. (2008), "Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack", Mech. Syst. Signal Pr., 22(3), 721-734. https://doi.org/10.1016/j.ymssp.2007.09.015
  8. Flint, E.M., Liang, C. and Rogers, C.A. (1995), "Electromechanical analysis of piezoelectric stack active member power consumption", J. Intel. Mat. Syst. Str., 6 (1), 117-124. https://doi.org/10.1177/1045389X9500600115
  9. Han, R. and Shi, Z.F. (2011), "Exact analysis of 0-3 cement-based piezoelectric composites", J. Intel. Mat. Syst. Str., 22(3), 221-229. https://doi.org/10.1177/1045389X11398163
  10. Han, R. and Shi, Z.F. (2012), "Dynamic analysis of sandwich cement-based piezoelectric composites", Compos. Sci. Technol., 72(8), 894-901. https://doi.org/10.1016/j.compscitech.2012.02.021
  11. Han, R., Shi, Z.F. and Mo, Y.L. (2011), "Static analysis of 2-2 cement-based piezoelectric composites", Arch. Appl. Mech., 81(7), 839-851. https://doi.org/10.1007/s00419-010-0454-3
  12. Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Piezoelasticity solutions for functionally graded piezoelectric beams", Smart Mater. Struct., 16(3), 687-695. https://doi.org/10.1088/0964-1726/16/3/015
  13. Huang, D.J., Ding, H.J. and Chen, W.Q. (2008), "Analysis of functionally graded and laminated piezoelectric cantilever actuators subjected to constant voltage", Smart Mater. Struct., 17 (6), 065002. https://doi.org/10.1088/0964-1726/17/6/065002
  14. Huston, D.R., Fuhr, P.L., Ambrose, T.P. and Barker, D.A. (1994), "Intelligent civil structures-activities in vermont", Smart Mater. Struct., 3(2), 129-139. https://doi.org/10.1088/0964-1726/3/2/008
  15. Jang, S., Sim, S.H., Jo, H. and Spencer Jr, B.F. (2012), "Full-scale experimental validation of decentralized damage identification using wireless smart sensors", Smart Mater. Struct., 21(11), 115019. https://doi.org/10.1088/0964-1726/21/11/115019
  16. Jang, S., Jo, H., Cho, S., Mechitov, K., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer Jr, B.F. and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart Struct. Syst., 6(5-6), 439-459. https://doi.org/10.12989/sss.2010.6.5_6.439
  17. Li, H.N., Li, D.S. and Song, G. (2004), "Recent applications of fiber optic sensors to health monitoring in civil engineering", Eng. Struct., 26(11), 1647-1657. https://doi.org/10.1016/j.engstruct.2004.05.018
  18. Li, P., Gu, H., Song, G., Zheng, R. and Mo, Y.L. (2010), "Concrete structural health monitoring using piezoceramic-based wireless sensor networks", Smart Struct. Syst., 6(5-6), 731-748. https://doi.org/10.12989/sss.2010.6.5_6.731
  19. Li, Y. and Shi, Z.F. (2009), "Free vibration of a functionally graded piezoelectric beam via state-space based differential quadrature", Compos. Struct., 87(3), 257-264. https://doi.org/10.1016/j.compstruct.2008.01.012
  20. Li, Z.J., Zhang, D. and Wu, K.R. (2001), "Cement matrix 2-2 piezoelectric composite-Part 1. Sensory effect", Mater. Struct., 34 (8), 506-512.
  21. Li, Z.J., Huang, S.F., Qin, L. and Cheng, X. (2007), "An investigation on 1-3 cement based piezoelectric composites", Smart Mater. Struct., 16, 999-1005. https://doi.org/10.1088/0964-1726/16/4/007
  22. Li, Z.X., Yang, X.M. and Li, Z. (2006), "Application of cement-based piezoelectric sensors for monitoring traffic flows", J. Transp. Eng. - ASCE, 132(7), 565-573. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:7(565)
  23. Lim, C.W., He, L.H. and Soh, A.K. (2001), "Three-dimensional electromechanical responses of a parallel piezoelectric bimorph", Int. J. Solids Struct., 38(16), 2833-2849. https://doi.org/10.1016/S0020-7683(00)00186-4
  24. Mason, W.P. (1950), Piezoelectric crystals and their application to ultrasonics, Van Nostrand Reinhold, New York, NY, USA.
  25. Shi, Z.F. and Wang, J.J. (2013), "Dynamic analysis of 2-2 cement-based piezoelectric transducers", J. Intel. Mat. Syst. Str., 24(1), 99-107. https://doi.org/10.1177/1045389X12460340
  26. Song, G., Mo, Y.L., Otero, K. and Gu, H. (2006), "Health monitoring and rehabilitation of a concrete structure using intelligent materials", Smart Mater. Struct., 15(2), 309-314. https://doi.org/10.1088/0964-1726/15/2/010
  27. Song, G., Gu, H., Mo, Y.L., Hsu, T.T.C. and Dhonde, H. (2007), "Concrete structural health monitoring using embedded piezoceramic transducers", Smart Mater. Struct., 16(4), 959-968. https://doi.org/10.1088/0964-1726/16/4/003
  28. Xiang, H.J. and Shi, Z.F. (2008), "Static analysis for multi-layered piezoelectric cantilevers", Int. J. Solids Struct., 45(1), 113-128. https://doi.org/10.1016/j.ijsolstr.2007.07.022
  29. Xiang, H.J. and Shi, Z.F. (2009), "Static analysis of a multilayer piezoelectric actuator with bonding layers and electrodes", Smart Struct. Syst., 5(5), 547-564. https://doi.org/10.12989/sss.2009.5.5.547
  30. Xu, D.Y., Cheng, X., Huang, S.F. and Jiang, M.H. (2009), "Electromechanical Properties of 2-2 Cement Based Piezoelectric Composite", Curr. Appl. Phys., 9 (4), 816-819. https://doi.org/10.1016/j.cap.2008.07.015
  31. Xu, D.Y., Cheng, X., Huang, S.F. and Jiang, M.H. (2011), "Effect of cement matrix and composite thickness on properties of 2-2 type cement-based piezoelectric composites", J. Compos. Mater., 45(20), 2083-2089. https://doi.org/10.1177/0021998311401059
  32. Yang, J. and Xiang, H.J. (2007), "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators", Smart Mater. Struct., 16(3), 784-797. https://doi.org/10.1088/0964-1726/16/3/028
  33. Yang, J., Kitipornchai, S. and Liew, K.M. (2004), "Non-linear analysis of the thermo-electro-mechanical behaviour of shear deformable FGM plates with piezoelectric actuators", Int. J. Numer. Meth. Eng., 59 (12), 1605-1632. https://doi.org/10.1002/nme.932
  34. Yao, R.X. and Shi, Z.F. (2011), "Steady-state forced vibration of functionally graded piezoelectric beams", J. Intel. Mat. Syst. Str., 22 (8), 769-779. https://doi.org/10.1177/1045389X11409604
  35. Zhang, D., Li, Z.J. and Wu, K.R. (2002), "2-2 piezoelectric cement matrix composite: Part II. Actuator effect", Cement Concrete Res., 32 (5), 825-830. https://doi.org/10.1016/S0008-8846(01)00761-X
  36. Zhang, T.T. and Shi, Z.F. (2006), "Two-dimensional exact analysis for piezoelectric curved actuators", J. Micromech. Microeng., 16 (3), 640-647. https://doi.org/10.1088/0960-1317/16/3/020
  37. Zhang, T.T. and Shi, Z.F. (2011), "Exact analysis of the dynamic properties of a 2-2 cement based piezoelectric transducer", Smart Mater. Struct., 20 (8), 085017. https://doi.org/10.1088/0964-1726/20/8/085017

피인용 문헌

  1. Modeling and optimization of adjustable multifrequency axially polarized multilayer composite cylindrical transducer vol.24, pp.4, 2015, https://doi.org/10.1088/0964-1726/24/4/045003
  2. Electromechanical properties of smart aggregate: theoretical modeling and experimental validation vol.25, pp.9, 2016, https://doi.org/10.1088/0964-1726/25/9/095008
  3. Effects of electrodes and electrical connections of piezoelectric layers on dynamic characteristics of radially polarized multilayer piezoelectric cylindrical transducers pp.1530-8138, 2019, https://doi.org/10.1177/1045389X18803454
  4. Electromechanical impact analysis of 2-2 cement-based piezoelectric sensor considering resistor vol.31, pp.9, 2020, https://doi.org/10.1177/1045389x20914391
  5. Design and Analysis of a Novel Piezoceramic Stack-based Smart Aggregate vol.20, pp.22, 2014, https://doi.org/10.3390/s20226438
  6. Actuating Performance Analysis of a New Smart Aggregate Using Piezoceramic Stack vol.11, pp.20, 2021, https://doi.org/10.3390/app11209599