DOI QR코드

DOI QR Code

An Orbital Stability Study of the Proposed Companions of SW Lyncis

  • Hinse, T.C. (Korea Astronomy and Space Science Institute) ;
  • Horner, Jonathan (Computational Engineering and Science Research Centre, University of Southern Queensland) ;
  • Wittenmyer, Robert A. (Australian Centre for Astrobiology, University of New South Wales)
  • Received : 2014.05.31
  • Accepted : 2014.08.19
  • Published : 2014.09.15

Abstract

We have investigated the dynamical stability of the proposed companions orbiting the Algol type short-period eclipsing binary SW Lyncis (Kim et al. 2010). The two candidate companions are of stellar to substellar nature, and were inferred from timing measurements of the system's primary and secondary eclipses. We applied well-tested numerical techniques to accurately integrate the orbits of the two companions and to test for chaotic dynamical behavior. We carried out the stability analysis within a systematic parameter survey varying both the geometries and orientation of the orbits of the companions, as well as their masses. In all our numerical integrations we found that the proposed SW Lyn multi-body system is highly unstable on time-scales on the order of 1000 years. Our results cast doubt on the interpretation that the timing variations are caused by two companions. This work demonstrates that a straightforward dynamical analysis can help to test whether a best-fit companion-based model is a physically viable explanation for measured eclipse timing variations. We conclude that dynamical considerations reveal that the proposed SW Lyncis multi-body system most likely does not exist or the companions have significantly different orbital properties from those conjectured in Kim et al. (2010).

Keywords

References

  1. Almeida LA, Jablonski F, Rodrigues CV, Two Possible Circumbinary Planets in the Eclipsing Postcommon Envelope System NSVS 14256825, ApJ, 766, 11-15 (2013). https://doi.org/10.1088/0004-637X/766/1/11
  2. Beuermann K, Hessman FV, Dreizler S, Marsh TR, Parsons SG, et al., Two planets orbiting the recently formed post-common envelope binary NN Serpentis, A&A, 521, L60-L64 (2010). http://dx.doi.org/10.1051/0004-6361/201015472
  3. Beuermann K, Dreizler S, Hessman FV, The quest for companions to post-common envelope binaries. IV. The 2:1 mean-motion resonance of the planets orbiting NN Serpentis, A&A, 555, 133-140 (2013). http://dx.doi.org/10.1051/0004-6361/201220510
  4. Borkovits T, Hegedues T, On the invisible components of some eclipsing binaries, A&AS, 120, 63-75 (1996). http://dx.doi.org/10.1051/aas:1996275
  5. Chambers JE, A hybrid symplectic integrator that permits close encounters between massive bodies, MNRAS, 304, 793-799 (1999). http://dx.doi.org/10.1046/j.1365-8711.1999.02379.x
  6. Cincotta PM, Giordano CM, Simo C, Phase-space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits, Physica D, 182, 151-178 (2003). http://dx.doi.org/10.1016/S0167-2789(03)00103-9
  7. Doyle LR, Carter JA, Fabrycky DC, Slawson RW, Howell SB, et al., Kepler-16: A Transiting Circumbinary Planet, Science, 333, 1602-1606 (2011). http://dx.doi.org/10.1126/science.1210923
  8. Gozdziewski K, Bois E, Maciejewski AJ, Kiseleva-Eggleton L, Global dynamics of planetary systems with the MEGNO criterion, MNRAS, 378, 569-586 (2001). http://dx.doi.org/10.1051/0004-6361:20011189
  9. Gozdziewski K, Nasiroglu I, S lowikowska A, Beuermann K, Kanbach G, et al., On the HU Aquarii planetary system hypothesis, MNRAS, 425, 930-949 (2012). http://dx.doi.org/10.1111/j.1365-2966.2012.21341.x
  10. Hinse TC, Christou AA, Alvarellos JLA, Gozdziewski K, Application of the MEGNO technique to the dynamics of Jovian irregular satellites, MNRAS, 404, 837-857 (2010). http://dx.doi.org/10.1111/j.1365-2966.2010.16307.x
  11. Hinse TC, Lee JW, Gozdziewski K, Haghighipour N, Lee CU, et al., New light-travel time models and orbital stability study of the proposed planetary system HU Aquarii, MNRAS, 420, 3609-3620 (2012a). http://dx.doi.org/10.1111/j.1365-2966.2011.20283.x
  12. Hinse TC, Gozdziewski K, Lee JW, Haghighipour N, Lee CU, The Proposed Quadruple System SZ Herculis: Revised LITE Model and Orbital Stability Study, AJ, 144, 34-43 (2012b). http://dx.doi.org/10.1088/0004-6256/144/2/34
  13. Hinse TC, Horner J, Lee JW, Wittenmyer RA, Lee C-U, et al., On the RZ Draconis Sub-stellar Circumbinary Companions Stability Study of the Proposed Sub-stellar Circumbinary System, A&A, 565, A104-A111, (2014a). http://dx.doi.org/10.1051/0004-6361/201423799
  14. Hinse TC, Lee JW, Gozdziewski K, Horner J, Wittenmyer RA, Revisiting the proposed circumbinary multiplanet system NSVS 14256825, MNRAS, 438, 307-317 (2014b). http://dx.doi.org/10.1093/mnras/stt2183
  15. Hinse TC, Lee JW, Synthetic modelling of the lighttravel time effect of circumbinary planets, Proceedings of the International Astronomical Union, IAUS, 8, 289-290 (2014c). http://dx.doi.org/10.1017/S1743921313008636
  16. Horner J, Marshall JP, Wittenmyer RA, Tinney CG, A dynamical analysis of the proposed HU Aquarii planetary system, MNRAS, 416, L11-L15 (2011). http://dx.doi.org/10.1111/j.1745-3933.2011.01087.x
  17. Horner J, Wittenmyer RA, Hinse TC, Tinney CG, A detailed investigation of the proposed NN Serpentis planetary system, MNRAS, 425, 749-756 (2012a). http://dx.doi.org/10.1111/j.1365-2966.2012.21620.x
  18. Horner J, Hinse TC, Wittenmyer RA, Marshall JP, Tinney CG, A dynamical analysis of the proposed circumbinary HW Virginis planetary system, MNRAS, 427, 2812-2823 (2012b). http://dx.doi.org/10.1111/j.1365-2966.2012.22046.x
  19. Horner J, Wittenmyer RA, Hinse TC, Marshall JP, Mustill AJ, et al., A detailed dynamical investigation of the proposed QS Virginis planetary system, MNRAS, 435, 2033-2039 (2013). http://dx.doi.org/10.1093/mnras/stt1420
  20. Irwin JB, The Determination of a Light-Time Orbit, ApJ, 116, 211-218 (1952). http://dx.doi.org/10.1086/145604
  21. Kim CH, Nha IS, Kreiner JM, A Possible Detection of a Second Light-Time Orbit for the Massive, Earlytype Eclipsing Binary Star AH Cephei, AJ, 129, 990-1000 (2005). http://dx.doi.org/10.1086/426747
  22. Kim CH, Kim HI, Yoon TS, Han W, Lee JW, et al., SWLyncis-advances and questions, JASS, 27, 263- 278 (2010). http://dx.doi.org/10.5140/JASS.2010.27.4.263
  23. Kostov VB, McCullough PR, Hinse TC, Tsvetanov ZI, Hebrard G et al., A Gas Giant Circumbinary Planet Transiting the F Star Primary of the Eclipsing Binary Star KIC 4862625 and the Independent Discovery and Characterisation of the Two Transiting Planets in the Kepler-47 System, ApJ, 770, 52-70 (2013). http://dx.doi.org/10.1088/0004-637X/770/1/52
  24. Lee JW, Kim SL, Kim CH, Koch RH, Lee CU, et al., The sdB+M Eclipsing System HW Virginis and its Circumbinary Planets, AJ, 137, 3181-3190 (2009). http://dx.doi.org/10.1088/0004-6256/137/2/3181.
  25. Lee JW, Lee CU, Kim SL, Kim HI, Park JH, The Algol System SZ Herculis: Physical Nature and Orbital Behavior, AJ, 143, 34-41 (2012). http://dx.doi.org/10.1088/0004-6256/143/2/34
  26. Lee JW, Kim SL, Lee CU, Lee BC, Park BG et al., The Triply eclipsing Hierarchical Triple Star KIC 002856960, ApJ, 763, 74-80 (2013). http://dx.doi.org/10.1088/0004-637X/763/2/74
  27. Mikkola S, Innanen K, Symplectic Tangent Map for Planetary Motions, CeMDA, 74, 59-67 (1999). http://dx.doi.org/10.1023/A:1008312912468
  28. Murray CD, Dermott SF, Solar System Dynamics (Univ. Cambridge Press, Massachusetts, 2001)
  29. Orosz JA, Welsh WF, Carter JA, Fabrycky DC, Cochran WD, et al., Kepler-47: A transiting circumbinary multiplanet system, Science, 337, 1511- 1514 (2012). http://dx.doi.org/10.1126/science.1228380
  30. Parsons, SG, Marsh TR, Bours MCP, Li ttlefair SP, Copperwheat CM, et al., Timing variations in the secondary eclipse of NN Ser, MNRAS, 438, 91-95 (2014). http://dx.doi.org/10.1093/mnrasl/slt169
  31. Potter SB, Romero-Colmenero E, Ramsay G, Crawford S, Gulbis A, et al., Possible detection of two giant extrasolar planets orbiting the eclipsing polar UZ Fornacis, MNRAS, 416, 2202-2211 (2011). http://dx.doi.org/10.1111/j.1365-2966.2011.19198.x
  32. Pribulla T, Vanko M, Ammler-von Eiff M, Andreev M, Aslanturk A, et al., The Dwarf project : Eclipsing binaries - precise clocks to discover exoplanets, AN, 333, 754-764 (2012).
  33. Qian SB, Liu L, Liao WP, Li LJ, Zhu LY et al., Detection of a planetary system orbiting the eclipsing polar HU Aqr, MNRAS, 414, L16 - L20 (2011). http://dx.doi.org/10.1111/j.1745-3933.2011.01045.x
  34. Slonina M, Gozdziewski K, Migaszewski C, Mechanic: the MPI/HDF code framework for dynamical astronomy, New Astronomy, 34, 98-107 (2015). http://dx.doi.org/10.1016/j.newast.2014.05.006
  35. Sybilski P, Konacki M, Kozlowski, S, Detecting circumbinary planets using eclipse timing of binary stars - numerical simulations, MNRAS, 405, 657-665 (2010). http://dx.doi.org/10.1111/j.1365-2966.2010.16490.x
  36. Wittenmyer RA, Horner JA, Marshall JP, Butters OW, Tinney CG, Revisiting the proposed planetary system orbiting the eclipsing polar HU Aquarii, MNRAS, 419, 3258-3267, (2012). http://dx.doi.org/10.1111/j.1365-2966.2011.19966.x
  37. Wittenmyer RA, Horner J, Marshall JP, On the dynamical stability of the proposed planetary system orbiting NSVS 14256825, MNRAS 431, 2150-2154 (2013). http://dx.doi.org/10.1093/mnras/stt299

Cited by

  1. Evidence for a planetary mass third body orbiting the binary star KIC 5095269 vol.468, pp.3, 2017, https://doi.org/10.1093/mnras/stx604
  2. The HU Aqr planetary system hypothesis revisited vol.448, pp.2, 2015, https://doi.org/10.1093/mnras/stu2728
  3. Evidence for quasiperiodicity in orbital period modulation of WW Cygni vol.362, pp.4, 2017, https://doi.org/10.1007/s10509-017-3057-4
  4. The Anglo-Australian Planet Search. XXV. A Candidate Massive Saturn Analog Orbiting HD 30177 vol.153, pp.4, 2017, https://doi.org/10.3847/1538-3881/aa5f17