DOI QR코드

DOI QR Code

Prediction of the flexural overstrength factor for steel beams using artificial neural network

  • Guneyisi, Esra Mete (Department of Civil Engineering, Gaziantep University) ;
  • D'niell, Mario (Department of Structures for Engineering and Architecture, University of Naples "Federico II") ;
  • Landolfo, Raffaele (Department of Structures for Engineering and Architecture, University of Naples "Federico II") ;
  • Mermerdas, Kasim (Department of Civil Engineering, Hasan Kalyoncu University)
  • 투고 : 2013.10.10
  • 심사 : 2014.07.11
  • 발행 : 2014.09.25

초록

The flexural behaviour of steel beams significantly affects the structural performance of the steel frame structures. In particular, the flexural overstrength (namely the ratio between the maximum bending moment and the plastic bending strength) that steel beams may experience is the key parameter affecting the seismic design of non-dissipative members in moment resisting frames. The aim of this study is to present a new formulation of flexural overstrength factor for steel beams by means of artificial neural network (NN). To achieve this purpose, a total of 141 experimental data samples from available literature have been collected in order to cover different cross-sectional typologies, namely I-H sections, rectangular and square hollow sections (RHS-SHS). Thus, two different data sets for I-H and RHS-SHS steel beams were formed. Nine critical prediction parameters were selected for the former while eight parameters were considered for the latter. These input variables used for the development of the prediction models are representative of the geometric properties of the sections, the mechanical properties of the material and the shear length of the steel beams. The prediction performance of the proposed NN model was also compared with the results obtained using an existing formulation derived from the gene expression modeling. The analysis of the results indicated that the proposed formulation provided a more reliable and accurate prediction capability of beam overstrength.

키워드

참고문헌

  1. AISC 341-10 (2010), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
  2. Aleksander, I. and Morton, H. (1993), Neurons and Symbols: The Staff That Mind is Made of, Chapman and Hall, London, England.
  3. Anderson, J.A. (1995), An Introduction to Neural Networks, A Bradford Book, MIT Press, Cambridge, MA, USA.
  4. Arbib, M.A. (1995), Handbook of Brain Theory and NN, MIT Press, Cambridge, MA, USA.
  5. Boeraeve, P. and Lognard, B. (1993), "Elasto-plastic behaviour of steel frame works", J. Construct. Steel Res., 27(1-3), 3-21. https://doi.org/10.1016/0143-974X(93)90003-B
  6. Brooke, N.J. and Ingham, J.M. (2011), "The effect of reinforcement strength on the overstrength factor for reinforced concrete beams", Proceedings of the Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society, Auckland, New Zealand, April.
  7. Climenhaga, J.J. (1970), "Local buckling in composite beams", Ph.D. Dissertation, University of Cambridge, Cambridge, England.
  8. Dahl, W., Langenberg, P., Sedlacek, G. and Spangemacher, R. (1992), "Elastisch-Plastisches Verhalten von Stahlkonstruktionen Anfoderungen und Werkstoffkennwerte", Doc.-Nr. 7210-Sa / 118 (91-F6.05), Rheinisch-Westfalischen Technischen Hochshule Aachen, Germany.
  9. Da Silva, S.L., Rebelo, C., Nethercot, D., Marques, L., Simoes, R. and Vila Real, P.M.M. (2009), "Statistical evaluation of the lateral-torsional buckling resistance of steel I-beams, Part 2: Variability of steel properties", J. Construct. Steel Res., 65(4), 832-849. https://doi.org/10.1016/j.jcsr.2008.07.017
  10. D'Aniello, M., Landolfo, R., Piluso, V. and Rizzano, G. (2012), "Ultimate behavior of steel beams under non-uniform bending", J. Construct. Steel Res., 78, 144-158. https://doi.org/10.1016/j.jcsr.2012.07.003
  11. D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2014), "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Wall. Struct., 77, 141-152. DOI: 10.1016/j.tws.2013.09.015
  12. Della Corte, G., D'Aniello, M. and Mazzolani, F.M. (2007), "Inelastic response of shear links with axial restraints: Numerical vs. Analytical results", Proceedings of the 5th International Conference on Advances in Steel Structures, Singapore, December.
  13. Della Corte, G., D'Aniello, M. and Landolfo, R. (2013), "Analytical and numerical study of plastic overstrength of shear links", J. Construct. Steel Res., 82, 19-32. https://doi.org/10.1016/j.jcsr.2012.11.013
  14. EN 1993-1-1: Eurocode 3 (2005), Design of Steel Structures - Part 1: General Rules and Rules for Buildings, CEN (European Communities for Standardization), Brussels, Belgium.
  15. Fonseca, E.T., Vellasco, P.C.G.d.S., de Andrade, S.A.L. and Vellasco, M.M.B.R. (2003), "Neural network evaluation of steel beam patch load capacity", Adv. Eng. Software, 34(11-12), 763-772. https://doi.org/10.1016/S0965-9978(03)00104-2
  16. Frye, M.J. and Morris, G.A. (1975), "Analysis of flexibly connected steel frames", Can. J. Civ. Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026
  17. Gandomi, A.H., Alavi, A.H., Kazemi, S.S. and Alinia, M.M. (2009), "Behavior appraisal of steel semi-rigid joints using Linear Genetic Programming", J. Construct. Steel Res., 65(8-9), 1738-1750. https://doi.org/10.1016/j.jcsr.2009.04.010
  18. Gao, S., Zhang, Z. and Cao, C. (2011), "Road traffic freight volume forecast using support vector machine combining forecasting", J. Software, 6(9), 1680-1687.
  19. Gholizadeh, S., Pirmoz, A. and Attarnejad, R. (2011), "Assessment of load carrying capacity of castellated steel beams by neural networks", J. Construct. Steel Res., 67(5), 770-779. https://doi.org/10.1016/j.jcsr.2011.01.001
  20. Grecea, D., Dinu, F. and Dubina, D. (2004), "Performance criteria for MR steel frames in seismic zones", J. Construct. Steel Res., 60(3-5), 739-749. https://doi.org/10.1016/S0143-974X(03)00140-8
  21. Grubb, M.A. and Carskaddan, P.S. (1979), "AISI project 188, 97-H-045(019-4), Autostress design of highway bridges Phase 3: Initial moment-rotation tests", United States Steel Corporation Research Laboratory, USA.
  22. Grubb, M.A. and Carskaddan, P.S. (1981), "AISI project 188, 97-H-045(018-1), Autostress design of highway bridges Phase 3: Moment-rotation requirements", United States Steel Corporation Research Laboratory, USA.
  23. Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Construct. Steel Res., 90, 60-71. https://doi.org/10.1016/j.jcsr.2013.07.022
  24. Hakim, S.J.S. and Abdul-Razak, H. (2013), "Structural damage detection of steel bridge girder using artificial neural networks and finite element models", Steel Compos. Struct., Int. J., 14(4), 367-377. https://doi.org/10.12989/scs.2013.14.4.367
  25. Hayalioglu, M.S. and Degertekin, S.O. (2004), "Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections", Steel Compos. Struct., Int. J., 4(6), 453-469. https://doi.org/10.12989/scs.2004.4.6.453
  26. Kemp, A. (1985), "Interaction of plastic local and lateral buckling", ASCE J. Struct. Eng., 111(10), 2181-2196. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:10(2181)
  27. Kim, S.E. and Ma, S.S. (2007), "Optimal design using genetic algorithm with nonlinear inelastic analysis", Steel Compos. Struct., Int. J., 7(6), 421-440. https://doi.org/10.12989/scs.2007.7.6.421
  28. Kim, D., Kim, D.H., Cui, J., Seo, H.Y. and Lee, Y.H. (2009a), "Iterative neural network strategy for static model identification of an FRP deck", Steel Compos. Struct., Int. J., 9(5), 445-455. https://doi.org/10.12989/scs.2009.9.5.445
  29. Kim, K.N., Lee, S.H. and Jung, K.S. (2009b), "Prediction on the fatigue life of butt-welded specimens using artificial neural network", Steel Compos. Struct., Int. J., 9(6), 557-568. https://doi.org/10.12989/scs.2009.9.6.557
  30. Landolfo, R., D'Aniello, M., Brescia, M. and Tortorelli, S. (2011), Rotation capacity and classification criteria of steel beams. The development of innovative approaches for the design of steel-concrete structural systems - the line 5 of the ReLUIS-DPC 2005-2008 Project 37-88, Doppiavoce, Napoli, Italy.
  31. Levenberg, K. (1944), "A method for the solution of certain non-linear problems in least squares", Q. J. Appl. Math., 2(2), 164-168.
  32. Lukey, A.F. and Adams, P.F. (1969), "Rotation capacity of beams under moment gradient", J Struct. Div., 95(ST 6), 1173-1188.
  33. Mazzolani, F.M. and Piluso, V. (1993), "Member behavioural classes of steel beams and beam-columns", Proceedings of XIV CTA Conference, Viareggio, Italy, June.
  34. Mukherjee, A. and Biswas, S.N. (1997), "Artificial neural networks in prediction of mechanical behavior of concrete at high temperature", Nucl. Eng. Des., 178(3), 1-11. https://doi.org/10.1016/S0029-5493(97)00152-0
  35. OPCM 3274 (2003), First elements in the matter of general criteria for seismic classification of the national territory and of technical codes for structures in seismic zones, Official Gazette of the Italian Republic, and further modifications, Rome, Italy.
  36. Rebelo, C., Lopes, N., Simoes da Silva, L., Nethercot, D. and Vila Real, P.M.M. (2009), "Statistical evaluation of the lateral-torsional buckling resistance of steel I-beams, Part 1: Variability of the Eurocode 3 resistance model", J. Construct. Steel Res., 65(4), 818-831. https://doi.org/10.1016/j.jcsr.2008.07.016
  37. Schilling, C.G. (1988), "Moment-rotation tests of steel bridge girders", ASCE J. Struct. Eng., 114(1), 134-149. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:1(134)
  38. Schilling, C.G. (1994), "Moment-rotation tests of steel girders with ultracompact flanges", Proceedings of 1990 Annual Technical Session, Stability of Bridges, Structural Stability Research Council, St. Louis, MO, USA.
  39. Suzuki, T., Ogawa, T. and Ikaraski, K. (1994), "A study on local buckling behaviour of hybrid beams", Thin-Wall. Struct., 19(2-4), 337-351. https://doi.org/10.1016/0263-8231(94)90038-8
  40. Topcu, I.B. and Saridemir, M. (2008), "Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 42(1), 74-82. https://doi.org/10.1016/j.commatsci.2007.06.011
  41. Tortorelli, S., D'Aniello, M. and Landolfo, R. (2010), "Lateral capacity of steel structures designed according to EC8 under catastrophic seismic events", Proceedings of the Final Conference COST ACTION C26: Urban Habitat Constructions under Catastrophic Events, Naples, Italy, September.
  42. Wargsjo, A. (1991), "Plastisk rotationskapacitet hos svetsade stalbalkar", Licentiate Thesis, Lulea University of Technology, Sweden. [In Swedish]
  43. Wilkinson, T. (1999), "The plastic behaviour of cold formed rectangular hollow sections", Ph.D. Thesis, Department of Civil Engineering, University of Sydney, Australia.
  44. Yu, W.W. (2000), Cold Formed Steel Design, (3rd Edition), John Wiley & Sons Inc., USA.
  45. Zadeh, L.A. (1994), "Soft computing and fuzzy logic", IEEE Software, 11(6), 48-56.
  46. Zhou, F. and Young, B. (2005), "Tests of cold-formed stainless steel tubular flexural members", Thin-Wall. Struct., 43(9), 1325-1337. https://doi.org/10.1016/j.tws.2005.06.005

피인용 문헌

  1. Explicit formulation of drying and autogenous shrinkage of concretes with binary and ternary blends of silica fume and fly ash vol.94, 2015, https://doi.org/10.1016/j.conbuildmat.2015.07.074
  2. Predictive equations for shear link modeling toward collapse vol.151, 2017, https://doi.org/10.1016/j.engstruct.2017.08.052
  3. Non-destructive identification of pull-off adhesion between concrete layers vol.57, 2015, https://doi.org/10.1016/j.autcon.2015.06.004
  4. Seismic performance of dual-steel moment resisting frames vol.101, 2014, https://doi.org/10.1016/j.jcsr.2014.06.007
  5. Optimum shape of large-span trusses according to AISC-LRFD using Ranked Particles Optimization vol.134, 2017, https://doi.org/10.1016/j.jcsr.2017.03.021
  6. Numerical assessment of the influence of different joint hysteretic models over the seismic behaviour of Moment Resisting Steel Frames vol.251, 2017, https://doi.org/10.1088/1757-899X/251/1/012102
  7. Seismic design of extended stiffened end-plate joints in the framework of Eurocodes vol.128, 2017, https://doi.org/10.1016/j.jcsr.2016.09.017
  8. Determination of Damage in Reinforced Concrete Frames with Shear Walls Using Self-Organizing Feature Map vol.2017, 2017, https://doi.org/10.1155/2017/3508189
  9. Influence of seismic design rules on the robustness of steel moment resisting frames vol.21, pp.3, 2016, https://doi.org/10.12989/scs.2016.21.3.479
  10. Ultimate behaviour of RHS temper T6 aluminium alloy beams subjected to non-uniform bending: Parametric analysis vol.115, 2017, https://doi.org/10.1016/j.tws.2017.02.006
  11. Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams vol.94, 2015, https://doi.org/10.1016/j.tws.2015.03.020
  12. Soft Computing Models to Predict Pavement Roughness: A Comparative Study vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/5939806
  13. Influence of Dissipative Joints on the Behaviour of Steel MRFs: FREEDAM vs Equal-Strength Bolted Joints vol.473, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/473/1/012037
  14. Preliminary Finite Element Analyses on the Experimental Mock-Up Frames of FREEDAM Research Project vol.473, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/473/1/012038
  15. Investigation of the cyclic inelastic capacity of steel beams through the use of the plastic collapse mechanism vol.13, pp.5, 2015, https://doi.org/10.1007/s10518-014-9665-2
  16. On the Origin of I Beams and Quick Analysis on the Structural Efficiency of Hot-rolled Steel Members vol.11, pp.1, 2014, https://doi.org/10.2174/1874149501711010332
  17. Behavior of Steel Welded Tapered Beam-column vol.11, pp.1, 2014, https://doi.org/10.2174/1874149501711010345
  18. Nonlinear Performance of Extended Stiffened End Plate Bolted Beam-to-column Joints Subjected to Column Removal vol.11, pp.1, 2017, https://doi.org/10.2174/1874149501711010369
  19. A study on the comparison of a steel building with braced frames and with RC walls vol.12, pp.3, 2014, https://doi.org/10.12989/eas.2017.12.3.263
  20. Applicability of Hybrid Built-Up Wide Flange Steel Beams vol.10, pp.5, 2014, https://doi.org/10.3390/met10050567
  21. Artificial neural network implementation for masonry compressive strength estimation vol.173, pp.9, 2014, https://doi.org/10.1680/jstbu.18.00089
  22. Evolution of EC8 Seismic Design Rules for X Concentric Bracings vol.12, pp.11, 2020, https://doi.org/10.3390/sym12111807
  23. Influence of the P-Delta Effect on the Design of Steel Moment Resisting Frame in Seismic Areas vol.873, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/kem.873.33
  24. Predicting GPR Signals from Concrete Structures Using Artificial Intelligence-Based Method vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6610805
  25. Influence of the Bolt Material Properties on the Ultimate Capacity of End Plate Bolted Joint Subjected to Column Loss vol.885, pp.None, 2014, https://doi.org/10.4028/www.scientific.net/kem.885.133
  26. Modeling flexural overstrength factor for steel beams using heuristic soft-computing methods vol.34, pp.None, 2021, https://doi.org/10.1016/j.istruc.2021.09.075
  27. Peak strength prediction of reinforced concrete columns in different failure modes based on gene expression programming vol.24, pp.16, 2014, https://doi.org/10.1177/13694332211026216