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Abstract. In this paper we introduce the notion of medial B-algebras,
and we obtain a fundamental theorem of B-homomorphism for B-algebras.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras [4, 5]. It is known that the class of BCK-algebras
is a proper subclass of the class of BCI-algebras. In [2, 3] Q. P. Hu and X.
Li introduced a wide class of abstract algebras: BCH-algebras. They have
shown that the class of BCI-algebras is a proper subclass of the class of BCH-
algebras. J. Neggers and H. S. Kim [8] introduced the notion of d-algebras, i.e.,
(I) x ∗ x = 0;(V) 0 ∗ x = 0; (VI) x ∗ y = 0 and y ∗ x = 0 implay x = y, which
is another useful generalization of BCK-algebras, and then they investigated
several relations between d-algebras and oriented digraphs. Recently, Y. B. Jun,
E. H. Roh and H. S. Kim [6] introduced a new notion, called an BH-algebra,
i.e., (I),(II) x ∗ 0 = 0 and (IV), which is a generalization of BCH/BCI/BCK-
algebras. They also defined the notions of ideals and boundedness in BH-
algebras, and showed that there is a maximal ideal in bounded BH-algebras.
J. Neggers and H. S. Kim [9] introduced and investigated a class of algebras,
i.e., the class of B-algebras, which is related to several classed of algebras of in-
terest such as BCH/BCI/BCK-algebras and which seems to have rather nice
properties without being excessively complicated otherwise. Furthermore, a di-
graph on algebras defined below demonstrates a rather interesting connection
between B-algebras and groups. J. R. Cho and H. S. Kim [1] discussed further
relations between B-algebras and other classed of algebras, such as quasigroups.
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J. Neggers and H. S. Kim [10] introduced the notion of normality in B-algebras
and obtained a fundamental theorem of B-homomorphism for B-algebras.

In this paper we introduce the notion of medial B-algebras, and we obtain a
fundamental theorem of B-homomorphism for B-algebras.

2. Preliminaries

In this section, we introduce some notions and results which have also been
discussed in [1, 9]. A B-algebra is a non-empty set X with a constant 0 and a
binary operation “ ∗ ” satisfying the following axioms:

(I) x ∗ x = 0,
(II) x ∗ 0 = x,
(III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))

for all x, y, z in X.

Example 2.1. Let X := {0, 1, 2} be a set with the following table:

∗ 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

Then (X; ∗, 0) is a B-algebra.

Example 2.2 ([9]). Let X be the set of all real numbers except for a negative
integer −n. Define a binary operation ∗ on X by

x ∗ y :=
n(x− y)

n+ y
.

Then (X; ∗, 0) is a B-algebra.

Example 2.3. Let X := {0, 1, 2, 3, 4, 5} be a set with the following table:

∗ 0 1 2 3 4 5

0 0 2 1 3 4 5

1 1 0 2 4 5 3

2 2 1 0 5 3 4

3 3 4 5 0 2 1

4 4 5 3 1 0 2

5 5 3 4 2 1 0

Then (X; ∗, 0) is a B-algebra (see[10]).
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Example 2.4 ([9]). Let F < x, y, z > be the free group on three elements.
Define u ∗ v := vuv−2. Thus u ∗ u = e and u ∗ e = u. Also e ∗ u = u−1. Now,
given a, b, c,∈ F < x, y, z >, let

w(a, b, c) = ((a ∗ b) ∗ c)(a ∗ (c ∗ (e ∗ b))−1

= (cbab−2c−2)(b−1cb2a−1cbcb2)−1

= cbab−2c−2b−2c−1b−1c−1ba−1b−2c−1b.

Let N(∗) be the normal subgroup of F < x, y, z > generated by the elements
w(a, b, c). Let G = F < x, y, z > /N(∗). On G define the operation “·” as usual
and define

(uN(∗)) ∗ (vN(∗)) := (u ∗ v)N(∗).

It follows that (uN(∗)) ∗ (uN(∗)) = eN(∗), (uN(∗)) ∗ (eN(∗)) = uN(∗) and

w(aN(∗), bN(∗), cN(∗)) = w(a, b, c)N(∗) = eN(∗).

Hence (G; ∗, eN(∗)) is a B-algebra.

Lemma 2.5 ([9]). If (X; ∗, 0) is a B-algebra, then y ∗ z = y ∗ (0 ∗ (0 ∗ z)) for
any y, z ∈ X.

Proposition 2.6 ([9]). If (X; ∗; 0) is a B-algebra, then

x ∗ (y ∗ z) = (x ∗ (0 ∗ z)) ∗ y

for any x, y, z ∈ X.

Lemma 2.7 ([1]). Let (X; ∗, 0) be a B-algebra. Then we have the following
statements.

(i) if x ∗ y = 0 then x = y for any x, y ∈ X;
(ii) if 0 ∗ x = 0 ∗ y then x = y for any x, y ∈ X;
(iii) 0 ∗ (0 ∗ x) = x for any x ∈ X.

Let (X; ∗, 0X) and (Y ; •, 0Y ) be B-algebras. A mapping φ : X −→ Y is called
a B-homomorphism[10] if φ(x ∗ y) = φ(x) • φ(y) for any x, y ∈ X.

Example 2.8 ([10]). Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3

0 0 2 1 3

1 1 0 3 2

2 2 3 0 1

3 3 1 2 0

Then (X; ∗, 0) is a B-algebra[1]. If we define φ(0) = 0, φ(1) = 3, φ(2) = 3 and
φ(3) = 0, then φ : X −→ Y is a B-homomorphism.
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A B-homomorphism φ : X −→ Y is called a B-isomorphism[10] if φ is a
bijection, and denote it by X ∼= Y . Note that if φ : X −→ Y is a B-isomorphism
then φ−1 : Y −→ X is also a B-isomorphism. If we define φ(0) = 0, φ(1) =
2, φ(2) = 1 and φ(3) = 3 in Example 2.8, then φ : X −→ Y is a B-isomorphism.
Let φ : X −→ Y be a B-homomorphism. Then the subset {x ∈ X | φ(x) = 0Y }
of X is called the kernel of the B-homomorphism φ, and denote it by Kerφ

Definition 2.9 ([10]). Let (X; ∗, 0) be a B-algebra. A non-empty subset N of
X is called a subalgebra of X if x ∗ y ∈ N , for any x, y ∈ N .

In Example 2.8, N1 := {0, 3} is a subalgebra of X, while N2 := {0, 1} is not a
subalgebra of X, since 0 ∗ 1 = 2 /∈ N2. Note that any subalgebra of a B-algebra
is also a B-algebra.

Theorem 2.10 ([10]). Let (X; ∗, 0) be a B-algebra and ∅ ̸= N ⊆ X. Then the
following are equivalent:

(a) N is a subalgebra of X.
(b) x ∗ (0 ∗ y), 0 ∗ y ∈ N , for any x, y ∈ N .

Note that any kernel of a B-homomorphism is a subalgebra of X.

3. Medial B-algebras

Let (X; ∗, 0) be a B-algebra and let N be a subalgebra of X. The set X(resp.,
N) is said to be medial if (x ∗ n1) ∗ (y ∗ n2) = (x ∗ y) ∗ (n1 ∗ n2) for any
x, y, n1, n2 ∈ X(resp., for any x, y, n1, n2 ∈ N).

Example 3.1. The B-algebra in Example 2.8, is medial. The B-algebra in
Example 2.3, is not medial, since (5 ∗ 2) ∗ (4 ∗ 3) = 4 ∗ 1 = 5 ̸= 3 = 1 ∗ 5 =
(5 ∗ 4) ∗ (2 ∗ 3).

J. Neggers and H. S. Kim[10] introduced the notion of a normal subalgebra
in B-algebras. A nonempty subset N of X is said to be normal (or normal
subalgebra) of X if (x ∗ a) ∗ (y ∗ b) ∈ N for any x ∗ a, y ∗ b ∈ N .

Example 3.2. The subalgebra N1 = {0, 3} is both a normal and a medial
subalgebra of X in Example 2.8, while the subalgebra N2 = {0, 3} in Example
2.3 is medial, but not normal.

Example 3.3. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3

0 0 3 2 1

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0

Then (X; ∗, 0) is a B-algebra and the subalgebra N3 = {0, 2} is a medial subal-
gebra of X.
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Let (X; ∗, 0) be a B-algebra and let N be a subalgebra of X. Define a relation
∼N on X by x ∼N y if and only if x ∗ N = y ∗ N , where x, y ∈ X. Then it is
easy to show that ∼N is an equivalence relation on X. Assume X is medial (or
N is a medial subalgebra of X). If x ∼N y and a ∼N b, where x, y, a, b ∈ N ,
then x ∗N = y ∗N and a ∗N = b ∗N and hence x = y ∗ n1, a = b ∗ n2 for some
n1, n2 ∈ N . Hence x ∗ a = (y ∗ n1) ∗ (b ∗ n2) = (y ∗ b) ∗ (n1 ∗ n2) ∈ (y ∗ b) ∗N ,
since X(resp., N) is medial. For any (x ∗ a) ∗ n3 ∈ (x ∗ a) ∗N , we have

(x ∗ a) ∗ n3 = ((y ∗ b) ∗ (n1 ∗ n2)) ∗ n3

= (y ∗ b) ∗ (n3 ∗ (0 ∗ (n1 ∗ n2))) [by (III)]

∈ (y ∗ b) ∗N [by Thereom 2.10]

Hence (x ∗ a) ∗N ⊆ (y ∗ b) ∗N . Similarly, we obtain (y ∗ b) ∗N ⊆ (x ∗ a) ∗N .
This means that x ∗ a ∼N y ∗ b, i.e., ∼N is a congruence relation on X. Denote
the equivalence class containing x by [x]N , i.e., [x]N = {y ∈ X |x ∼N y} and let
X/N := {[x]N |x ∈ X}. We show that X/N is a B-algebra.

Theorem 3.4. Let X be a medial B-algebra and let N be a subalgebra of X.
Then X/N is a medial B-algebra with N = [0]N .

Proof. If we define [x]N ∗ [y]N := [x∗y]N then the operation “∗” is well-defined,
since ∼N is a congruence relation on X. We claim that [0]N = N . If x ∈ [0]N ,
then x ∗N = 0 ∗N , and hence by (II) x = x ∗ 0 ∈ x ∗N = 0 ∗N , i.e., x = 0 ∗ n
for some n ∈ N . Since N is a subalgebra and 0 ∈ N , x = 0 ∗ n ∈ N . Hence
[0]N ⊆ N .

For any x ∈ N , since N is subalgebra of X, 0 ∗ x ∈ N , say n1 = 0 ∗ x. By
applying Lemma 2.7-(iii), x = 0 ∗ (0 ∗ x) ∈ 0 ∗N . We show that x ∗N = 0 ∗N .
For any x ∗ n ∈ x ∗N ,

x ∗ n = (0 ∗ (0 ∗ x)) ∗ n [by Lemma 2.7-(iii)]

= (0 ∗ (0 ∗ x)) ∗ (n ∗ 0)
= (0 ∗ n) ∗ (0 ∗ n) ∗ ((0 ∗ x) ∗ 0) [X : medial]

= (0 ∗ n) ∗ (0 ∗ x)
= (0 ∗ n) ∗ n1 [n1 = 0 ∗ x]
= 0 ∗ (n1 ∗ (0 ∗ n)) [by (III)]

∈ 0 ∗N [by Theorem 2.10]

Hence x ∗ N ⊆ 0 ∗ N . If y ∈ 0 ∗ N , then y = 0 ∗ n2 for some n2 ∈ N . Hence
y = 0 ∗ n2 = (x ∗ x) ∗ n2 = x ∗ (n2 ∗ (0 ∗ x)). Since x ∈ N , by Theorem 2.10,
n2 ∗ (0 ∗ x) ∈ N . Hence y ∈ x ∗ N , i.e., 0 ∗ N ⊆ x ∗ N . Thus x ∗ N = 0 ∗ N ,
i.e., x ∼N 0. Hence x ∈ [0]N , proving N ⊆ [0]N . Checking three axioms and
mediality is trivial and we omit the proof. �

Theorem 3.4 can be replaced by the following statement:
Theorem 3.4′. Let X be a B-algebra and N be a medial subalgebra of X. Then
X/N is a medial B-algebra with N = [0]N .
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The B-algebra X/N discussed in Theorems 3.4 and 3.4′ is called the quotient
B-algebra of X by N .

Proposition 3.5. Let N be a medial subalgebra of the B-algebra (X; ∗, 0).
Then the mapping γ : X −→ X/N , given by γ(x) := [x]N , is a surjective
B-homomorphism, and Kerγ = N .

Proof. The mapping γ is obviously surjective. For all x, y ∈ X, γ(x ∗ y) =
[x ∗ y]N = [x]N ∗ [y]N = γ(x) ∗ γ(y). Hence γ is a B-homomorphism. We claim
that {x ∈ X | [x]N = [0]N} = N . For any n ∈ N , we show that n ∗N = 0 ∗N .
If n1 ∈ N , by Lemma 2.7-(iii), n ∗ n1 = (0 ∗ (0 ∗ n)) ∗ n1 = 0 ∗ (n1 ∗ (0 ∗ (0 ∗
n))) = 0 ∗ (n1 ∗ n) ∈ 0 ∗ N , i.e., n ∗ N ⊆ 0 ∗ N . For any 0 ∗ n2 ∈ 0 ∗ N ,
0 ∗ n2 = (n ∗ n) ∗ n2 = n ∗ (n2 ∗ (0 ∗ n)) ∈ n ∗ N , i.e., 0 ∗ N ⊆ n ∗ N . This
proves 0 ∗N = n ∗N , i.e., [n]N = [0]N . If [x]N = [0]N , then x ∗N = 0 ∗N , i.e.,
x = 0 ∗ n1 for some n1 ∈ N . Since N is a subalgebra of X, x = 0 ∗ n1 ∈ N .
Hence

Kerγ = {x ∈ X | γ(x) = N}
= {x ∈ X | [x]N = N}
= {x ∈ X | [x]N = [0]N}
= N,

proving the proposition. �

The mapping γ discussed in Proposition 3.5 is called the natural(or canonical)
B-homomorphism of X onto X/N .

Proposition 3.6. Let X be a medial B-algebra. If φ : X −→ Y is a B-
homomorphism, then the kernel Kerφ is a medial subalgebra of X.

Proof. Straightforward. �

By Theorem 3.4 and Proposition 3.6, if φ : X −→ Y is a B-homomorphism,
then X/Kerφ is a B-algebra.

A B-algebra (X; ∗, 0) is said to be commutative[9] if a ∗ (0 ∗ b) = b ∗ (0 ∗ a) for
any a, b ∈ X. The B-algebra in Example 2.1 is commutative, while the B-algebra
in Example 2.3 is not commutative, since 3 ∗ (0 ∗ 4) = 2 ̸= 1 = 4 ∗ (0 ∗ 3).

Theorem 3.7. Let X be a commutative medial B-algebra and let φ : X −→ Y
be a B-homomorphism. Then X/Kerφ ∼= Imφ. In particular, if φ is surjective,
then X/Kerφ ∼= Y .

Proof. Let K := Kerφ. If we define Ψ : X/K −→ Imφ by Ψ([x]K) := φ(x),
then Ψ is well-defined. In fact, suppose that [x]K = [y]K . Then x ∼K y
and x ∗ K = y ∗ K, i.e., x = y ∗ k1, y = x ∗ k2 for some k1, k2 ∈ K. Hence
φ(x) = φ(y ∗ k1) = φ(y) ∗ φ(k1) = φ(y) ∗ 0 = φ(y), i.e., Ψ([x]K) = Ψ([y]K).
Suppose that Ψ([x]K) = Ψ([y]K), where [x]K , [y]K ∈ X/K. Then φ(x) = φ(y).
If α ∈ [x]K , then α ∼K x and α∗K = x∗K. This means that α = x∗k1, x = α∗k2
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for some k1, k2 ∈ K. Hence φ(α) = φ(x ∗ k1) = φ(x) ∗ φ(k1) = φ(x) = φ(y),
which implies φ(α ∗ y) = φ(α) ∗ φ(y) = 0. Hence α ∗ y ∈ Kerφ = K, i.e.,
α ∗ y = k3 for some k3 ∈ K. Similarly, φ(y) ∗ φ(α) = 0 implies y ∗ α = k4 for
some k4 ∈ K. Sice X is commutative,

α = α ∗ 0
= α ∗ (y ∗ y)
= (α ∗ (0 ∗ y)) ∗ y
= (y ∗ (0 ∗ α)) ∗ y [X:commutative]

= y ∗ (y ∗ α)
= y ∗ k4.

For any α ∗ k4 ∈ α ∗K,α ∗ k = (y ∗ k4) ∗ k = y ∗ (k ∗ (0 ∗ k4)) ∈ y ∗K. Hence
α ∗K ⊆ y ∗K. Conversely, we have

y = y ∗ 0
= y ∗ (α ∗ α)
= (α ∗ (0 ∗ y)) ∗ α
= α ∗ (α ∗ y)
= α ∗ k3 ∈ α ∗K,

proving y ∗K ⊆ α∗K. Hence α∗K = y ∗K, i.e., α ∼K y. This proves α ∈ [y]K .
Similarly, [y]K ⊆ [x]K . Thus [x]K = [y]K , proving that Ψ is injective. Obviously
Ψ is surjective. Since Ψ([x]K ∗ [y]K) = Ψ([x ∗ y]K) = φ(x ∗ y) = φ(x) ∗ φ(y) =
Ψ([x]K) ∗Ψ([y]K), Ψ is a B-homomorphism. Hence X/Kerφ ∼= Imφ. �

Example 3.8. In Example 2.8, since K = Kerφ = {0, 3}, we have [0]K = {0, 3}
and [1]K = {x ∈ X |x ∗ 1 ∈ K} = {1, 2}. Hence X/Kerφ = {[0]K , [1]K} and
X/Kerφ ∼= Imφ by defining Ψ([0]K) = φ(0) and Ψ([1]K) = φ(1).
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