```
J. Appl. Math. & Informatics Vol. 32(2014), No. 5-6, pp. 849-856

\title{
ON MEDIAL B-ALGEBRAS
}

YOUNG HEE KIM

\begin{abstract}
In this paper we introduce the notion of medial \(B\)-algebras, and we obtain a fundamental theorem of \(B\)-homomorphism for \(B\)-algebras.

AMS Mathematics Subject Classification : 06F35.
Key words and phrases : \(B\)-algebra, \(B\)-homomorphism, medial, subalgebra, quotient \(B\)-algebra.
\end{abstract}

\section*{1. Introduction}
Y. Imai and K. Iséki introduced two classes of abstract algebras: \(B C K\) algebras and \(B C I\)-algebras [4,5]. It is known that the class of \(B C K\)-algebras is a proper subclass of the class of \(B C I\)-algebras. In \([2,3] \mathrm{Q} . \mathrm{P} . \mathrm{Hu}\) and X . Li introduced a wide class of abstract algebras: BCH -algebras. They have shown that the class of \(B C I\)-algebras is a proper subclass of the class of \(B C H\) algebras. J. Neggers and H. S. Kim [8] introduced the notion of \(d\)-algebras, i.e., (I) \(x * x=0\);(V) \(0 * x=0\); (VI) \(x * y=0\) and \(y * x=0\) implay \(x=y\), which is another useful generalization of \(B C K\)-algebras, and then they investigated several relations between \(d\)-algebras and oriented digraphs. Recently, Y. B. Jun, E. H. Roh and H. S. Kim [6] introduced a new notion, called an \(B H\)-algebra, i.e., (I),(II) \(x * 0=0\) and (IV), which is a generalization of \(B C H / B C I / B C K\) algebras. They also defined the notions of ideals and boundedness in BH algebras, and showed that there is a maximal ideal in bounded \(B H\)-algebras. J. Neggers and H. S. Kim [9] introduced and investigated a class of algebras, i.e., the class of \(B\)-algebras, which is related to several classed of algebras of interest such as \(B C H / B C I / B C K\)-algebras and which seems to have rather nice properties without being excessively complicated otherwise. Furthermore, a digraph on algebras defined below demonstrates a rather interesting connection between \(B\)-algebras and groups. J. R. Cho and H. S. Kim [1] discussed further relations between \(B\)-algebras and other classed of algebras, such as quasigroups.

\footnotetext{
Received February 13, 2014. Revised February 28, 2014. Accepted March 17, 2014.
(c) 2014 Korean SIGCAM and KSCAM.
}
J. Neggers and H. S. Kim [10] introduced the notion of normality in \(B\)-algebras and obtained a fundamental theorem of \(B\)-homomorphism for \(B\)-algebras.

In this paper we introduce the notion of medial \(B\)-algebras, and we obtain a fundamental theorem of \(B\)-homomorphism for \(B\)-algebras.

\section*{2. Preliminaries}

In this section, we introduce some notions and results which have also been discussed in \([1,9]\). A \(B\)-algebra is a non-empty set \(X\) with a constant 0 and a binary operation "*" satisfying the following axioms:
(I) \(x * x=0\),
(II) \(x * 0=x\),
(III) \((x * y) * z=x *(z *(0 * y))\)
for all \(x, y, z\) in \(X\).
Example 2.1. Let \(X:=\{0,1,2\}\) be a set with the following table:
\begin{tabular}{c|lll}
\hline\(*\) & 0 & 1 & 2 \\
\hline 0 & 0 & 2 & 1 \\
1 & 1 & 0 & 2 \\
2 & 2 & 1 & 0 \\
\hline
\end{tabular}

Then \((X ; *, 0)\) is a \(B\)-algebra.
Example 2.2 ([9]). Let \(X\) be the set of all real numbers except for a negative integer \(-n\). Define a binary operation \(*\) on \(X\) by
\[
x * y:=\frac{n(x-y)}{n+y} .
\]

Then \((X ; *, 0)\) is a \(B\)-algebra.
Example 2.3. Let \(X:=\{0,1,2,3,4,5\}\) be a set with the following table:
\begin{tabular}{l|llllll}
\hline\(*\) & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 0 & 2 & 1 & 3 & 4 & 5 \\
1 & 1 & 0 & 2 & 4 & 5 & 3 \\
2 & 2 & 1 & 0 & 5 & 3 & 4 \\
3 & 3 & 4 & 5 & 0 & 2 & 1 \\
4 & 4 & 5 & 3 & 1 & 0 & 2 \\
5 & 5 & 3 & 4 & 2 & 1 & 0 \\
\hline
\end{tabular}

Then \((X ; *, 0)\) is a \(B\)-algebra (see[10]).

Example 2.4 ([9]). Let \(F<x, y, z>\) be the free group on three elements. Define \(u * v:=v u v^{-2}\). Thus \(u * u=e\) and \(u * e=u\). Also \(e * u=u^{-1}\). Now, given \(a, b, c, \in F<x, y, z>\), let
\[
\begin{aligned}
w(a, b, c) & =((a * b) * c)\left(a *(c *(e * b))^{-1}\right. \\
& =\left(c b a b^{-2} c^{-2}\right)\left(b^{-1} c b^{2} a^{-1} c b c b^{2}\right)^{-1} \\
& =c b a b^{-2} c^{-2} b^{-2} c^{-1} b^{-1} c^{-1} b a^{-1} b^{-2} c^{-1} b .
\end{aligned}
\]

Let \(N(*)\) be the normal subgroup of \(F<x, y, z\rangle\) generated by the elements \(w(a, b, c)\). Let \(G=F<x, y, z>/ N(*)\). On \(G\) define the operation "." as usual and define
\[
(u N(*)) *(v N(*)):=(u * v) N(*) .
\]

It follows that \((u N(*)) *(u N(*))=e N(*),(u N(*)) *(e N(*))=u N(*)\) and
\[
w(a N(*), b N(*), c N(*))=w(a, b, c) N(*)=e N(*) .
\]

Hence \((G ; *, e N(*))\) is a \(B\)-algebra.
Lemma \(2.5([9])\). If \((X ; *, 0)\) is a B-algebra, then \(y * z=y *(0 *(0 * z))\) for any \(y, z \in X\).

Proposition 2.6 ([9]). If \((X ; * ; 0)\) is a \(B\)-algebra, then
\[
x *(y * z)=(x *(0 * z)) * y
\]
for any \(x, y, z \in X\).
Lemma 2.7 ([1]). Let \((X ; *, 0)\) be a \(B\)-algebra. Then we have the following statements.
(i) if \(x * y=0\) then \(x=y\) for any \(x, y \in X\);
(ii) if \(0 * x=0 * y\) then \(x=y\) for any \(x, y \in X\);
(iii) \(0 *(0 * x)=x\) for any \(x \in X\).

Let \(\left(X ; *, 0_{X}\right)\) and \(\left(Y ; \bullet, 0_{Y}\right)\) be \(B\)-algebras. A mapping \(\varphi: X \longrightarrow Y\) is called a B-homomorphism[10] if \(\varphi(x * y)=\varphi(x) \bullet \varphi(y)\) for any \(x, y \in X\).

Example \(2.8([10])\). Let \(X:=\{0,1,2,3\}\) be a set with the following table:
\begin{tabular}{c|llll}
\hline\(*\) & 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 2 & 1 & 3 \\
1 & 1 & 0 & 3 & 2 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 1 & 2 & 0 \\
\hline
\end{tabular}

Then \((X ; *, 0)\) is a \(B\)-algebra[1]. If we define \(\varphi(0)=0, \varphi(1)=3, \varphi(2)=3\) and \(\varphi(3)=0\), then \(\varphi: X \longrightarrow Y\) is a \(B\)-homomorphism.

A \(B\)-homomorphism \(\varphi: X \longrightarrow Y\) is called a \(B\)-isomorphism[10] if \(\varphi\) is a bijection, and denote it by \(X \cong Y\). Note that if \(\varphi: X \longrightarrow Y\) is a \(B\)-isomorphism then \(\varphi^{-1}: Y \longrightarrow X\) is also a \(B\)-isomorphism. If we define \(\varphi(0)=0, \varphi(1)=\) \(2, \varphi(2)=1\) and \(\varphi(3)=3\) in Example 2.8, then \(\varphi: X \longrightarrow Y\) is a \(B\)-isomorphism. Let \(\varphi: X \longrightarrow Y\) be a \(B\)-homomorphism. Then the subset \(\left\{x \in X \mid \varphi(x)=0_{Y}\right\}\) of \(X\) is called the kernel of the \(B\)-homomorphism \(\varphi\), and denote it by \(\operatorname{Ker} \varphi\)

Definition 2.9 ([10]). Let \((X ; *, 0)\) be a \(B\)-algebra. A non-empty subset \(N\) of \(X\) is called a subalgebra of \(X\) if \(x * y \in N\), for any \(x, y \in N\).

In Example 2.8, \(N_{1}:=\{0,3\}\) is a subalgebra of \(X\), while \(N_{2}:=\{0,1\}\) is not a subalgebra of \(X\), since \(0 * 1=2 \notin N_{2}\). Note that any subalgebra of a \(B\)-algebra is also a \(B\)-algebra.

Theorem 2.10 ([10]). Let \((X ; *, 0)\) be a B-algebra and \(\emptyset \neq N \subseteq X\). Then the following are equivalent:
(a) \(N\) is a subalgebra of \(X\).
(b) \(x *(0 * y), 0 * y \in N\), for any \(x, y \in N\).

Note that any kernel of a \(B\)-homomorphism is a subalgebra of \(X\).

\section*{3. Medial \(B\)-algebras}

Let \((X ; *, 0)\) be a \(B\)-algebra and let \(N\) be a subalgebra of \(X\). The set \(X\) (resp., \(N)\) is said to be medial if \(\left(x * n_{1}\right) *\left(y * n_{2}\right)=(x * y) *\left(n_{1} * n_{2}\right)\) for any \(x, y, n_{1}, n_{2} \in X\) (resp., for any \(\left.x, y, n_{1}, n_{2} \in N\right)\).
Example 3.1. The \(B\)-algebra in Example 2.8, is medial. The \(B\)-algebra in Example 2.3, is not medial, since \((5 * 2) *(4 * 3)=4 * 1=5 \neq 3=1 * 5=\) \((5 * 4) *(2 * 3)\).
J. Neggers and H. S. Kim[10] introduced the notion of a normal subalgebra in \(B\)-algebras. A nonempty subset \(N\) of \(X\) is said to be normal (or normal subalgebra) of \(X\) if \((x * a) *(y * b) \in N\) for any \(x * a, y * b \in N\).

Example 3.2. The subalgebra \(N_{1}=\{0,3\}\) is both a normal and a medial subalgebra of \(X\) in Example 2.8, while the subalgebra \(N_{2}=\{0,3\}\) in Example 2.3 is medial, but not normal.

Example 3.3. Let \(X:=\{0,1,2,3\}\) be a set with the following table:
\begin{tabular}{c|llll}
\hline\(*\) & 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 3 & 2 & 1 \\
1 & 1 & 0 & 3 & 2 \\
2 & 2 & 1 & 0 & 3 \\
3 & 3 & 2 & 1 & 0 \\
\hline
\end{tabular}

Then \((X ; *, 0)\) is a \(B\)-algebra and the subalgebra \(N_{3}=\{0,2\}\) is a medial subalgebra of \(X\).

Let \((X ; *, 0)\) be a \(B\)-algebra and let \(N\) be a subalgebra of \(X\). Define a relation \(\sim_{N}\) on \(X\) by \(x \sim_{N} y\) if and only if \(x * N=y * N\), where \(x, y \in X\). Then it is easy to show that \(\sim_{N}\) is an equivalence relation on \(X\). Assume \(X\) is medial (or \(N\) is a medial subalgebra of \(X\) ). If \(x \sim_{N} y\) and \(a \sim_{N} b\), where \(x, y, a, b \in N\), then \(x * N=y * N\) and \(a * N=b * N\) and hence \(x=y * n_{1}, a=b * n_{2}\) for some \(n_{1}, n_{2} \in N\). Hence \(x * a=\left(y * n_{1}\right) *\left(b * n_{2}\right)=(y * b) *\left(n_{1} * n_{2}\right) \in(y * b) * N\), since \(X\) (resp., \(N\) ) is medial. For any \((x * a) * n_{3} \in(x * a) * N\), we have
\[
\begin{aligned}
(x * a) * n_{3} & =\left((y * b) *\left(n_{1} * n_{2}\right)\right) * n_{3} \\
& =(y * b) *\left(n_{3} *\left(0 *\left(n_{1} * n_{2}\right)\right)\right)[\text { by (III) }] \\
& \in(y * b) * N[\text { by Thereom 2.10 }]
\end{aligned}
\]

Hence \((x * a) * N \subseteq(y * b) * N\). Similarly, we obtain \((y * b) * N \subseteq(x * a) * N\). This means that \(x * a \sim_{N} y * b\), i.e., \(\sim_{N}\) is a congruence relation on \(X\). Denote the equivalence class containing \(x\) by \([x]_{N}\), i.e., \([x]_{N}=\left\{y \in X \mid x \sim_{N} y\right\}\) and let \(X / N:=\left\{[x]_{N} \mid x \in X\right\}\). We show that \(X / N\) is a \(B\)-algebra.
Theorem 3.4. Let \(X\) be a medial \(B\)-algebra and let \(N\) be a subalgebra of \(X\). Then \(X / N\) is a medial \(B\)-algebra with \(N=[0]_{N}\).
Proof. If we define \([x]_{N} *[y]_{N}:=[x * y]_{N}\) then the operation "*" is well-defined, since \(\sim_{N}\) is a congruence relation on \(X\). We claim that \([0]_{N}=N\). If \(x \in[0]_{N}\), then \(x * N=0 * N\), and hence by (II) \(x=x * 0 \in x * N=0 * N\), i.e., \(x=0 * n\) for some \(n \in N\). Since \(N\) is a subalgebra and \(0 \in N, x=0 * n \in N\). Hence \([0]_{N} \subseteq N\).

For any \(x \in N\), since \(N\) is subalgebra of \(X, 0 * x \in N\), say \(n_{1}=0 * x\). By applying Lemma 2.7-(iii), \(x=0 *(0 * x) \in 0 * N\). We show that \(x * N=0 * N\). For any \(x * n \in x * N\),
\[
\begin{aligned}
x * n & =(0 *(0 * x)) * n \quad[\text { by Lemma } 2.7-(\mathrm{iii})] \\
& =(0 *(0 * x)) *(n * 0) \\
& =(0 * n) *(0 * n) *((0 * x) * 0) \quad[X: \text { medial }] \\
& =(0 * n) *(0 * x) \\
& =(0 * n) * n_{1} \quad\left[n_{1}=0 * x\right] \\
& =0 *\left(n_{1} *(0 * n)\right) \quad[\text { by }(\mathrm{III})] \\
& \in 0 * N \quad[\text { by Theorem 2.10 }]
\end{aligned}
\]

Hence \(x * N \subseteq 0 * N\). If \(y \in 0 * N\), then \(y=0 * n_{2}\) for some \(n_{2} \in N\). Hence \(y=0 * n_{2}=(x * x) * n_{2}=x *\left(n_{2} *(0 * x)\right)\). Since \(x \in N\), by Theorem 2.10, \(n_{2} *(0 * x) \in N\). Hence \(y \in x * N\), i.e., \(0 * N \subseteq x * N\). Thus \(x * N=0 * N\), i.e., \(x \sim_{N} 0\). Hence \(x \in[0]_{N}\), proving \(N \subseteq[0]_{N}\). Checking three axioms and mediality is trivial and we omit the proof.

Theorem 3.4 can be replaced by the following statement:
Theorem 3.4'. Let \(X\) be a \(B\)-algebra and \(N\) be a medial subalgebra of \(X\). Then \(X / N\) is a medial \(B\)-algebra with \(N=[0]_{N}\).

The \(B\)-algebra \(X / N\) discussed in Theorems 3.4 and \(3.4^{\prime}\) is called the quotient \(B\)-algebra of \(X\) by \(N\).

Proposition 3.5. Let \(N\) be a medial subalgebra of the \(B\)-algebra ( \(X ; *, 0\) ). Then the mapping \(\gamma: X \longrightarrow X / N\), given by \(\gamma(x):=[x]_{N}\), is a surjective \(B\)-homomorphism, and \(\operatorname{Ker} \gamma=N\).

Proof. The mapping \(\gamma\) is obviously surjective. For all \(x, y \in X, \gamma(x * y)=\) \([x * y]_{N}=[x]_{N} *[y]_{N}=\gamma(x) * \gamma(y)\). Hence \(\gamma\) is a \(B\)-homomorphism. We claim that \(\left\{x \in X \mid[x]_{N}=[0]_{N}\right\}=N\). For any \(n \in N\), we show that \(n * N=0 * N\). If \(n_{1} \in N\), by Lemma 2.7-(iii), \(n * n_{1}=(0 *(0 * n)) * n_{1}=0 *\left(n_{1} *(0 *(0 *\right.\) \(n)))=0 *\left(n_{1} * n\right) \in 0 * N\), i.e., \(n * N \subseteq 0 * N\). For any \(0 * n_{2} \in 0 * N\), \(0 * n_{2}=(n * n) * n_{2}=n *\left(n_{2} *(0 * n)\right) \in n * N\), i.e., \(0 * N \subseteq n * N\). This proves \(0 * N=n * N\), i.e., \([n]_{N}=[0]_{N}\). If \([x]_{N}=[0]_{N}\), then \(x * N=0 * N\), i.e., \(x=0 * n_{1}\) for some \(n_{1} \in N\). Since \(N\) is a subalgebra of \(X, x=0 * n_{1} \in N\). Hence
\[
\begin{aligned}
\operatorname{Ker} \gamma & =\{x \in X \mid \gamma(x)=N\} \\
& =\left\{x \in X \mid[x]_{N}=N\right\} \\
& =\left\{x \in X \mid[x]_{N}=[0]_{N}\right\} \\
& =N,
\end{aligned}
\]
proving the proposition.
The mapping \(\gamma\) discussed in Proposition 3.5 is called the natural(or canonical) \(B\)-homomorphism of \(X\) onto \(X / N\).

Proposition 3.6. Let \(X\) be a medial B-algebra. If \(\varphi: X \longrightarrow Y\) is a \(B\) homomorphism, then the kernel Ker \(\varphi\) is a medial subalgebra of \(X\).

Proof. Straightforward.
By Theorem 3.4 and Proposition 3.6, if \(\varphi: X \longrightarrow Y\) is a \(B\)-homomorphism, then \(X / \operatorname{Ker} \varphi\) is a \(B\)-algebra.

A \(B\)-algebra \((X ; *, 0)\) is said to be commutative \([9]\) if \(a *(0 * b)=b *(0 * a)\) for any \(a, b \in X\). The \(B\)-algebra in Example 2.1 is commutative, while the \(B\)-algebra in Example 2.3 is not commutative, since \(3 *(0 * 4)=2 \neq 1=4 *(0 * 3)\).

Theorem 3.7. Let \(X\) be a commutative medial B-algebra and let \(\varphi: X \longrightarrow Y\) be a \(B\)-homomorphism. Then \(X / \operatorname{Ker} \varphi \cong \operatorname{Im} \varphi\). In particular, if \(\varphi\) is surjective, then \(X / \operatorname{Ker} \varphi \cong Y\).
Proof. Let \(K:=K e r \varphi\). If we define \(\Psi: X / K \longrightarrow \operatorname{Im} \varphi\) by \(\Psi\left([x]_{K}\right):=\varphi(x)\), then \(\Psi\) is well-defined. In fact, suppose that \([x]_{K}=[y]_{K}\). Then \(x \sim_{K} y\) and \(x * K=y * K\), i.e., \(x=y * k_{1}, y=x * k_{2}\) for some \(k_{1}, k_{2} \in K\). Hence \(\varphi(x)=\varphi\left(y * k_{1}\right)=\varphi(y) * \varphi\left(k_{1}\right)=\varphi(y) * 0=\varphi(y)\), i.e., \(\Psi\left([x]_{K}\right)=\Psi\left([y]_{K}\right)\). Suppose that \(\Psi\left([x]_{K}\right)=\Psi\left([y]_{K}\right)\), where \([x]_{K},[y]_{K} \in X / K\). Then \(\varphi(x)=\varphi(y)\). If \(\alpha \in[x]_{K}\), then \(\alpha \sim_{K} x\) and \(\alpha * K=x * K\). This means that \(\alpha=x * k_{1}, x=\alpha * k_{2}\)
for some \(k_{1}, k_{2} \in K\). Hence \(\varphi(\alpha)=\varphi\left(x * k_{1}\right)=\varphi(x) * \varphi\left(k_{1}\right)=\varphi(x)=\varphi(y)\), which implies \(\varphi(\alpha * y)=\varphi(\alpha) * \varphi(y)=0\). Hence \(\alpha * y \in \operatorname{Ker} \varphi=K\), i.e., \(\alpha * y=k_{3}\) for some \(k_{3} \in K\). Similarly, \(\varphi(y) * \varphi(\alpha)=0\) implies \(y * \alpha=k_{4}\) for some \(k_{4} \in K\). Sice \(X\) is commutative,
\[
\begin{aligned}
\alpha & =\alpha * 0 \\
& =\alpha *(y * y) \\
& =(\alpha *(0 * y)) * y \\
& =(y *(0 * \alpha)) * y[X: \text { commutative }] \\
& =y *(y * \alpha) \\
& =y * k_{4} .
\end{aligned}
\]

For any \(\alpha * k_{4} \in \alpha * K, \alpha * k=\left(y * k_{4}\right) * k=y *\left(k *\left(0 * k_{4}\right)\right) \in y * K\). Hence \(\alpha * K \subseteq y * K\). Conversely, we have
\[
\begin{aligned}
y & =y * 0 \\
& =y *(\alpha * \alpha) \\
& =(\alpha *(0 * y)) * \alpha \\
& =\alpha *(\alpha * y) \\
& =\alpha * k_{3} \in \alpha * K,
\end{aligned}
\]
proving \(y * K \subseteq \alpha * K\). Hence \(\alpha * K=y * K\), i.e., \(\alpha \sim_{K} y\). This proves \(\alpha \in[y]_{K}\). Similarly, \([y]_{K} \subseteq[x]_{K}\). Thus \([x]_{K}=[y]_{K}\), proving that \(\Psi\) is injective. Obviously \(\Psi\) is surjective. Since \(\Psi\left([x]_{K} *[y]_{K}\right)=\Psi\left([x * y]_{K}\right)=\varphi(x * y)=\varphi(x) * \varphi(y)=\) \(\Psi\left([x]_{K}\right) * \Psi\left([y]_{K}\right), \Psi\) is a \(B\)-homomorphism. Hence \(X / \operatorname{Ker} \varphi \cong \operatorname{Im} \varphi\).

Example 3.8. In Example 2.8, since \(K=\operatorname{Ker} \varphi=\{0,3\}\), we have \([0]_{K}=\{0,3\}\) and \([1]_{K}=\{x \in X \mid x * 1 \in K\}=\{1,2\}\). Hence \(X / \operatorname{Ker} \varphi=\left\{[0]_{K},[1]_{K}\right\}\) and \(X / \operatorname{Ker} \varphi \cong \operatorname{Im} \varphi\) by defining \(\Psi\left([0]_{K}\right)=\varphi(0)\) and \(\Psi\left([1]_{K}\right)=\varphi(1)\).

\section*{References}
1. J.R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroup and Related Systems 8 (2001), 1-6.
2. Q.P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
3. Q.P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
4. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
5. K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
6. Y.B. Jun, E.H. Roh, and H.S. Kim, On BH-algebras, Sci. Math. Japo. 1 (1998), 347-354.
7. J. Meng and Y.B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
8. J. Neggers and H.S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
9. J. Neggers and H.S. Kim, On B-algebras, Matematichki Vesnik 54 (2002), 21-29.
10. J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 207-214.
11. K.S. So and Y.H. Kim, Mirror d-Algebras, J. Appl. Math. \& Informatics 31 (2013), 559 564

Young Hee Kim is working as a professor in Department of Mathematics and is interested in BE-algebras.

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea. e-mail: yhkim@chungbuk.ac.kr```

