ON MEDIAL B-ALGEBRAS #### YOUNG HEE KIM ABSTRACT. In this paper we introduce the notion of medial B-algebras, and we obtain a fundamental theorem of B-homomorphism for B-algebras. AMS Mathematics Subject Classification: 06F35. Key words and phrases: B-algebra, B-homomorphism, medial, subalgebra, quotient B-algebra. ### 1. Introduction Y. Imai and K. Iséki introduced two classes of abstract algebras: BCKalgebras and BCI-algebras [4, 5]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [2, 3] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCHalgebras. J. Neggers and H. S. Kim [8] introduced the notion of d-algebras, i.e., (I) x * x = 0; (V) 0 * x = 0; (VI) x * y = 0 and y * x = 0 implay x = y, which is another useful generalization of BCK-algebras, and then they investigated several relations between d-algebras and oriented digraphs. Recently, Y. B. Jun, E. H. Roh and H. S. Kim [6] introduced a new notion, called an BH-algebra, i.e., (I),(II) x * 0 = 0 and (IV), which is a generalization of BCH/BCI/BCKalgebras. They also defined the notions of ideals and boundedness in BHalgebras, and showed that there is a maximal ideal in bounded BH-algebras. J. Neggers and H. S. Kim [9] introduced and investigated a class of algebras, i.e., the class of B-algebras, which is related to several classed of algebras of interest such as BCH/BCI/BCK-algebras and which seems to have rather nice properties without being excessively complicated otherwise. Furthermore, a digraph on algebras defined below demonstrates a rather interesting connection between B-algebras and groups. J. R. Cho and H. S. Kim [1] discussed further relations between B-algebras and other classed of algebras, such as quasigroups. Received February 13, 2014. Revised February 28, 2014. Accepted March 17, 2014. \odot 2014 Korean SIGCAM and KSCAM. J. Neggers and H. S. Kim [10] introduced the notion of normality in B-algebras and obtained a fundamental theorem of B-homomorphism for B-algebras. In this paper we introduce the notion of medial B-algebras, and we obtain a fundamental theorem of B-homomorphism for B-algebras. ## 2. Preliminaries In this section, we introduce some notions and results which have also been discussed in [1, 9]. A B-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms: - (I) x * x = 0, - (II) x * 0 = x, - (III) (x * y) * z = x * (z * (0 * y)) for all x, y, z in X. **Example 2.1.** Let $X := \{0, 1, 2\}$ be a set with the following table: | * | 0 | 1 | 2 | |---|---|---|---| | 0 | 0 | 2 | 1 | | 1 | 1 | 0 | 2 | | 2 | 2 | 1 | 0 | Then (X; *, 0) is a *B*-algebra. **Example 2.2** ([9]). Let X be the set of all real numbers except for a negative integer -n. Define a binary operation * on X by $$x * y := \frac{n(x - y)}{n + y}.$$ Then (X; *, 0) is a *B*-algebra. **Example 2.3.** Let $X := \{0, 1, 2, 3, 4, 5\}$ be a set with the following table: | * | 0 | 1 | 2 | 3 | 4 | 5 | |---|---|---|---|---|---|---| | 0 | 0 | 2 | 1 | 3 | 4 | 5 | | 1 | 1 | 0 | 2 | 4 | 5 | 3 | | 2 | 2 | 1 | 0 | 5 | 3 | 4 | | 3 | 3 | 4 | 5 | 0 | 2 | 1 | | 4 | 4 | 5 | 3 | 1 | 0 | 2 | | 5 | 5 | 3 | 4 | 2 | 1 | 0 | Then (X; *, 0) is a *B*-algebra (see[10]). **Example 2.4** ([9]). Let F < x, y, z > be the free group on three elements. Define $u * v := vuv^{-2}$. Thus u * u = e and u * e = u. Also $e * u = u^{-1}$. Now, given $a, b, c, \in F < x, y, z >$, let $$w(a,b,c) = ((a*b)*c)(a*(c*(e*b))^{-1}$$ $$= (cbab^{-2}c^{-2})(b^{-1}cb^{2}a^{-1}cbcb^{2})^{-1}$$ $$= cbab^{-2}c^{-2}b^{-2}c^{-1}b^{-1}c^{-1}ba^{-1}b^{-2}c^{-1}b.$$ Let N(*) be the normal subgroup of F < x, y, z > generated by the elements w(a,b,c). Let G = F < x, y, z > /N(*). On G define the operation "·" as usual and define $$(uN(*))*(vN(*)) := (u*v)N(*).$$ It follows that (uN(*)) * (uN(*)) = eN(*), (uN(*)) * (eN(*)) = uN(*) and $$w(aN(*), bN(*), cN(*)) = w(a, b, c)N(*) = eN(*).$$ Hence (G; *, eN(*)) is a *B*-algebra. **Lemma 2.5** ([9]). If (X; *, 0) is a B-algebra, then y * z = y * (0 * (0 * z)) for any $y, z \in X$. **Proposition 2.6** ([9]). If (X; *; 0) is a B-algebra, then $$x * (y * z) = (x * (0 * z)) * y$$ for any $x, y, z \in X$. **Lemma 2.7** ([1]). Let (X; *, 0) be a B-algebra. Then we have the following statements. - (i) if x * y = 0 then x = y for any $x, y \in X$; - (ii) if 0 * x = 0 * y then x = y for any $x, y \in X$; - (iii) $0 * (0 * x) = x \text{ for any } x \in X.$ Let $(X; *, 0_X)$ and $(Y; \bullet, 0_Y)$ be *B*-algebras. A mapping $\varphi : X \longrightarrow Y$ is called a *B*-homomorphism[10] if $\varphi(x * y) = \varphi(x) \bullet \varphi(y)$ for any $x, y \in X$. **Example 2.8** ([10]). Let $X := \{0, 1, 2, 3\}$ be a set with the following table: | * | 0 | 1 | 2 | 3 | |---|---|---|---|---| | 0 | 0 | 2 | 1 | 3 | | 1 | 1 | 0 | 3 | 2 | | 2 | 2 | 3 | 0 | 1 | | 3 | 3 | 1 | 2 | 0 | Then (X; *, 0) is a B-algebra[1]. If we define $\varphi(0) = 0, \varphi(1) = 3, \varphi(2) = 3$ and $\varphi(3) = 0$, then $\varphi: X \longrightarrow Y$ is a B-homomorphism. A *B*-homomorphism $\varphi: X \longrightarrow Y$ is called a *B*-isomorphism[10] if φ is a bijection, and denote it by $X \cong Y$. Note that if $\varphi: X \longrightarrow Y$ is a *B*-isomorphism then $\varphi^{-1}: Y \longrightarrow X$ is also a *B*-isomorphism. If we define $\varphi(0) = 0, \varphi(1) = 2, \varphi(2) = 1$ and $\varphi(3) = 3$ in Example 2.8, then $\varphi: X \longrightarrow Y$ is a *B*-isomorphism. Let $\varphi: X \longrightarrow Y$ be a *B*-homomorphism. Then the subset $\{x \in X \mid \varphi(x) = 0_Y\}$ of X is called the *kernel* of the *B*-homomorphism φ , and denote it by $Ker\varphi$ **Definition 2.9** ([10]). Let (X; *, 0) be a *B*-algebra. A non-empty subset *N* of *X* is called a *subalgebra* of *X* if $x * y \in N$, for any $x, y \in N$. In Example 2.8, $N_1 := \{0, 3\}$ is a subalgebra of X, while $N_2 := \{0, 1\}$ is not a subalgebra of X, since $0 * 1 = 2 \notin N_2$. Note that any subalgebra of a B-algebra is also a B-algebra. **Theorem 2.10** ([10]). Let (X; *, 0) be a B-algebra and $\emptyset \neq N \subseteq X$. Then the following are equivalent: - (a) N is a subalgebra of X. - (b) $x * (0 * y), 0 * y \in N$, for any $x, y \in N$. Note that any kernel of a B-homomorphism is a subalgebra of X. ## 3. Medial B-algebras Let (X; *, 0) be a B-algebra and let N be a subalgebra of X. The set X(resp., N) is said to be medial if $(x * n_1) * (y * n_2) = (x * y) * (n_1 * n_2)$ for any $x, y, n_1, n_2 \in X(\text{resp.}, \text{ for any } x, y, n_1, n_2 \in N)$. **Example 3.1.** The *B*-algebra in Example 2.8, is medial. The *B*-algebra in Example 2.3, is not medial, since $(5*2)*(4*3)=4*1=5\neq 3=1*5=(5*4)*(2*3)$. J. Neggers and H. S. Kim[10] introduced the notion of a normal subalgebra in *B*-algebras. A nonempty subset N of X is said to be *normal* (or *normal subalgebra*) of X if $(x*a)*(y*b) \in N$ for any $x*a,y*b \in N$. **Example 3.2.** The subalgebra $N_1 = \{0,3\}$ is both a normal and a medial subalgebra of X in Example 2.8, while the subalgebra $N_2 = \{0,3\}$ in Example 2.3 is medial, but not normal. **Example 3.3.** Let $X := \{0, 1, 2, 3\}$ be a set with the following table: | * | 0 | 1 | 2 | 3 | |---|---|---|---|---| | 0 | 0 | 3 | 2 | 1 | | 1 | 1 | 0 | 3 | 2 | | 2 | 2 | 1 | 0 | 3 | | 3 | 3 | 2 | 1 | 0 | Then (X; *, 0) is a *B*-algebra and the subalgebra $N_3 = \{0, 2\}$ is a medial subalgebra of X. Let (X;*,0) be a B-algebra and let N be a subalgebra of X. Define a relation \sim_N on X by $x\sim_N y$ if and only if x*N=y*N, where $x,y\in X$. Then it is easy to show that \sim_N is an equivalence relation on X. Assume X is medial (or N is a medial subalgebra of X). If $x\sim_N y$ and $a\sim_N b$, where $x,y,a,b\in N$, then x*N=y*N and a*N=b*N and hence $x=y*n_1,a=b*n_2$ for some $n_1,n_2\in N$. Hence $x*a=(y*n_1)*(b*n_2)=(y*b)*(n_1*n_2)\in (y*b)*N$, since X(resp.,N) is medial. For any $(x*a)*n_3\in (x*a)*N$, we have $$(x*a)*n_3 = ((y*b)*(n_1*n_2))*n_3$$ = $(y*b)*(n_3*(0*(n_1*n_2)))$ [by (III)] $\in (y*b)*N$ [by Thereom 2.10] Hence $(x*a)*N \subseteq (y*b)*N$. Similarly, we obtain $(y*b)*N \subseteq (x*a)*N$. This means that $x*a\sim_N y*b$, i.e., \sim_N is a congruence relation on X. Denote the equivalence class containing x by $[x]_N$, i.e., $[x]_N = \{y \in X \mid x \sim_N y\}$ and let $X/N := \{[x]_N \mid x \in X\}$. We show that X/N is a B-algebra. **Theorem 3.4.** Let X be a medial B-algebra and let N be a subalgebra of X. Then X/N is a medial B-algebra with $N = [0]_N$. *Proof.* If we define $[x]_N * [y]_N := [x * y]_N$ then the operation "*" is well-defined, since \sim_N is a congruence relation on X. We claim that $[0]_N = N$. If $x \in [0]_N$, then x * N = 0 * N, and hence by (II) $x = x * 0 \in x * N = 0 * N$, i.e., x = 0 * n for some $n \in N$. Since N is a subalgebra and $0 \in N$, $x = 0 * n \in N$. Hence $[0]_N \subseteq N$. For any $x \in N$, since N is subalgebra of X, $0 * x \in N$, say $n_1 = 0 * x$. By applying Lemma 2.7-(iii), $x = 0 * (0 * x) \in 0 * N$. We show that x * N = 0 * N. For any $x * n \in x * N$, $$x*n = (0*(0*x))*n \quad \text{[by Lemma 2.7-(iii)]}$$ $$= (0*(0*x))*(n*0)$$ $$= (0*n)*(0*n)*((0*x)*0) \quad [X: \text{medial]}$$ $$= (0*n)*(0*x)$$ $$= (0*n)*n_1 \quad [n_1 = 0*x]$$ $$= 0*(n_1*(0*n)) \quad [\text{by (III)}]$$ $$\in 0*N \quad [\text{by Theorem 2.10}]$$ Hence $x*N\subseteq 0*N$. If $y\in 0*N$, then $y=0*n_2$ for some $n_2\in N$. Hence $y=0*n_2=(x*x)*n_2=x*(n_2*(0*x))$. Since $x\in N$, by Theorem 2.10, $n_2*(0*x)\in N$. Hence $y\in x*N$, i.e., $0*N\subseteq x*N$. Thus x*N=0*N, i.e., $x\sim_N 0$. Hence $x\in [0]_N$, proving $N\subseteq [0]_N$. Checking three axioms and mediality is trivial and we omit the proof. Theorem 3.4 can be replaced by the following statement: **Theorem 3.4'.** Let X be a B-algebra and N be a medial subalgebra of X. Then X/N is a medial B-algebra with $N = [0]_N$. The B-algebra X/N discussed in Theorems 3.4 and 3.4' is called the *quotient* B-algebra of X by N. **Proposition 3.5.** Let N be a medial subalgebra of the B-algebra (X; *, 0). Then the mapping $\gamma: X \longrightarrow X/N$, given by $\gamma(x) := [x]_N$, is a surjective B-homomorphism, and $Ker\gamma = N$. *Proof.* The mapping γ is obviously surjective. For all x, y ∈ X, $γ(x * y) = [x * y]_N = [x]_N * [y]_N = γ(x) * γ(y)$. Hence γ is a *B*-homomorphism. We claim that $\{x ∈ X \mid [x]_N = [0]_N\} = N$. For any n ∈ N, we show that n * N = 0 * N. If $n_1 ∈ N$, by Lemma 2.7-(iii), $n * n_1 = (0 * (0 * n)) * n_1 = 0 * (n_1 * (0 * (0 * n))) = 0 * (n_1 * n) ∈ 0 * N$, i.e., n * N ⊆ 0 * N. For any $0 * n_2 ∈ 0 * N$, $0 * n_2 = (n * n) * n_2 = n * (n_2 * (0 * n)) ∈ n * N$, i.e., 0 * N ⊆ n * N. This proves 0 * N = n * N, i.e., $[n]_N = [0]_N$. If $[x]_N = [0]_N$, then x * N = 0 * N, i.e., $x = 0 * n_1$ for some $n_1 ∈ N$. Since N is a subalgebra of X, $x = 0 * n_1 ∈ N$. Hence $$Ker\gamma = \{x \in X \mid \gamma(x) = N\}$$ $$= \{x \in X \mid [x]_N = N\}$$ $$= \{x \in X \mid [x]_N = [0]_N\}$$ $$= N,$$ proving the proposition. The mapping γ discussed in Proposition 3.5 is called the *natural* (or *canonical*) B-homomorphism of X onto X/N. **Proposition 3.6.** Let X be a medial B-algebra. If $\varphi : X \longrightarrow Y$ is a B-homomorphism, then the kernel $Ker\varphi$ is a medial subalgebra of X. *Proof.* Straightforward. By Theorem 3.4 and Proposition 3.6, if $\varphi: X \longrightarrow Y$ is a *B*-homomorphism, then $X/Ker\varphi$ is a *B*-algebra. A *B*-algebra (X; *, 0) is said to be *commutative*[9] if a * (0 * b) = b * (0 * a) for any $a, b \in X$. The *B*-algebra in Example 2.1 is commutative, while the *B*-algebra in Example 2.3 is not commutative, since $3 * (0 * 4) = 2 \neq 1 = 4 * (0 * 3)$. **Theorem 3.7.** Let X be a commutative medial B-algebra and let $\varphi: X \longrightarrow Y$ be a B-homomorphism. Then $X/Ker\varphi \cong Im\varphi$. In particular, if φ is surjective, then $X/Ker\varphi \cong Y$. Proof. Let $K:=Ker\varphi$. If we define $\Psi:X/K\longrightarrow Im\varphi$ by $\Psi([x]_K):=\varphi(x)$, then Ψ is well-defined. In fact, suppose that $[x]_K=[y]_K$. Then $x\sim_K y$ and x*K=y*K, i.e., $x=y*k_1,y=x*k_2$ for some $k_1,k_2\in K$. Hence $\varphi(x)=\varphi(y*k_1)=\varphi(y)*\varphi(k_1)=\varphi(y)*0=\varphi(y)$, i.e., $\Psi([x]_K)=\Psi([y]_K)$. Suppose that $\Psi([x]_K)=\Psi([y]_K)$, where $[x]_K,[y]_K\in X/K$. Then $\varphi(x)=\varphi(y)$. If $\alpha\in [x]_K$, then $\alpha\sim_K x$ and $\alpha*K=x*K$. This means that $\alpha=x*k_1,x=\alpha*k_2$ for some $k_1, k_2 \in K$. Hence $\varphi(\alpha) = \varphi(x * k_1) = \varphi(x) * \varphi(k_1) = \varphi(x) = \varphi(y)$, which implies $\varphi(\alpha * y) = \varphi(\alpha) * \varphi(y) = 0$. Hence $\alpha * y \in Ker\varphi = K$, i.e., $\alpha * y = k_3$ for some $k_3 \in K$. Similarly, $\varphi(y) * \varphi(\alpha) = 0$ implies $y * \alpha = k_4$ for some $k_4 \in K$. Sice X is commutative, $$\alpha = \alpha * 0 = \alpha * (y * y) = (\alpha * (0 * y)) * y = (y * (0 * \alpha)) * y [X:commutative] = y * (y * \alpha) = y * k4.$$ For any $\alpha * k_4 \in \alpha * K$, $\alpha * k = (y * k_4) * k = y * (k * (0 * k_4)) \in y * K$. Hence $\alpha * K \subseteq y * K$. Conversely, we have $$y = y * 0$$ $$= y * (\alpha * \alpha)$$ $$= (\alpha * (0 * y)) * \alpha$$ $$= \alpha * (\alpha * y)$$ $$= \alpha * k_3 \in \alpha * K.$$ proving $y*K \subseteq \alpha*K$. Hence $\alpha*K = y*K$, i.e., $\alpha \sim_K y$. This proves $\alpha \in [y]_K$. Similarly, $[y]_K \subseteq [x]_K$. Thus $[x]_K = [y]_K$, proving that Ψ is injective. Obviously Ψ is surjective. Since $\Psi([x]_K*[y]_K) = \Psi([x*y]_K) = \varphi(x*y) = \varphi(x)*\varphi(y) = \Psi([x]_K)*\Psi([y]_K)$, Ψ is a B-homomorphism. Hence $X/Ker\varphi \cong Im\varphi$. **Example 3.8.** In Example 2.8, since $K = Ker\varphi = \{0,3\}$, we have $[0]_K = \{0,3\}$ and $[1]_K = \{x \in X \mid x * 1 \in K\} = \{1,2\}$. Hence $X/Ker\varphi = \{[0]_K, [1]_K\}$ and $X/Ker\varphi \cong Im\varphi$ by defining $\Psi([0]_K) = \varphi(0)$ and $\Psi([1]_K) = \varphi(1)$. ### References - 1. J.R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroup and Related Systems 8 (2001), 1–6. - 2. Q.P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313–320. - 3. Q.P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661. - 4. K. Iséki, $On~BCI\mbox{-}algebras,$ Math. Seminar Notes 8 (1980), 125–130. - K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1–26. - 6. Y.B. Jun, E.H. Roh, and H.S. Kim, $On\ BH$ -algebras, Sci. Math. Japo. 1 (1998), 347–354. - 7. J. Meng and Y.B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994. - 8. J. Neggers and H.S. Kim, $On\ d\text{-}algebras,$ Math. Slovaca $\mathbf{49}$ (1999), 19–26. - 9. J. Neggers and H.S. Kim, On B-algebras, Matematichki Vesnik 54 (2002), 21–29. - J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 207–214. 11. K.S. So and Y.H. Kim, $Mirror\ d$ -Algebras, J. Appl. Math. & Informatics **31** (2013), 559 – 564 Young Hee Kim is working as a professor in Department of Mathematics and is interested in BE-algebras. Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea. e-mail: yhkim@chungbuk.ac.kr