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CAYLEY INTUITIONISTIC FUZZY GRAPHS

MUHAMMAD AKRAM∗, M.G. KARUNAMBIGAI AND O.K. KALAIVANI

Abstract. In this paper, we introduce the notion of Cayley intuitionistic
fuzzy graphs and investigate some of their properties. We present some
interesting properties of intuitionistic fuzzy graphs in terms of algebraic
structures. We discuss connectedness in Cayley intuitionistic fuzzy graphs.
We also describe different types of α-connectedness in Cayley intuitionistic
fuzzy graphs.
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1. Introduction

Graph theory has numerous applications to problems in different areas in-
cluding computer science, electrical engineering, system analysis, operations re-
search, economics, networking routing, transportation, and optimization. Point-
to-point interconnection networks for parallel and distributed systems are usually
modeled by directed graphs (or digraphs). A digraph is a graph whose edges have
direction and are called arcs (edges). Arrows on the arcs are used to encode the
directional information: an arc from vertex (node)x to vertex y indicates that
one may move from x to y but not from y to x. The Cayley graph was first
considered for finite groups by Cayley in 1878. Max Dehn in his unpublished
lectures on group theory from 1909-10 reintroduced Cayley graphs under the
name Gruppenbild (group diagram), which led to the geometric group theory
of today. His most important application was the solution of the word problem
for the fundamental group of surfaces with genus, which is equivalent to the
topological problem of deciding which closed curves on the surface contract to a
point [6, 7].

Fuzzy set is a newly emerging mathematical frame work to exemplify the
phenomenon of uncertainty in real life tribulations. It was introduced by Zadeh
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in 1965, and the concepts were pioneered by various independent researches.
Kaufmann’s initial definition of a fuzzy graph [13] was based on Zadeh’s fuzzy
relations [24]. Rosenfeld [17] introduced the fuzzy analogue of several basic
graph-theoretic concepts. Mordeson and Peng [16] defined the concept of com-
plement of fuzzy graph and studied some operations on fuzzy graphs. Atanassov
[8] introduced the concept of intuitionistic fuzzy relations and intuitionistic fuzzy
graphs and further were studied in [4, 12, 19, 20]. In 1983, Atanassov [9] intro-
duced the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets
[23]. Atanassov added a new component (which determines the degree of non-
membership) in the definition of fuzzy set. The fuzzy sets give the degree of
membership of an element in a given set (and the nonmembership degree equals
one minus the degree of membership), while intuitionistic fuzzy sets give both
a degree of membership and a degree of nonmembership which are more-or-less
independent from each other, the only requirement is that the sum of these two
degrees is not greater than 1. Akram et al.[1-3] introduced many new concepts,
including intuitionistic fuzzy hypergraphs, strong intuitionistic fuzzy graphs, in-
tuitionistic fuzzy cycles and intuitionistic fuzzy trees. Wu [22] discussed fuzzy
digraphs. Shahzamanian et al.[21] introduced the notion of roughness in Cayley
graphs and investigated several properties. Namboothiri et al.[18] studied Cay-
ley fuzzy graphs. In this paper, we introduce the notion of Cayley intuitionistic
fuzzy graphs and investigate some of their properties. We present some interest-
ing properties of intuitionistic fuzzy graphs in terms of algebraic structures. We
discuss connectedness in Cayley intuitionistic fuzzy graphs. We also describe
different types of α- connectedness in Cayley intuitionistic fuzzy graphs.

We have used standard definitions and terminologies in this paper. For other
notations, terminologies and applications not mentioned in the paper, the readers
are referred to [5-7, 11, 21].

2. Preliminaries

In this section, we review some elementary concepts whose understanding is
necessary fully benefit from this paper.
A digraph is a pair G∗ = (V,E), where V is a finite set and E ⊆ V × V . In this
paper, we will write xy ∈ E to mean x → y ∈ E, and if e = xy ∈ E, we say x
and y are adjacent such that x is a starting node and y is an ending node.
The study of vertex-transitive graphs has a long and rich history in discrete
mathematics. Prominent examples of vertex-transitive graphs are Cayley graphs
which are important in both theory as well as applications, e.g., Cayley graphs
are good models for interconnection networks.

Definition 2.1. Let G be a finite group and let S be a minimal generating set of
G. A Cayley graph (G,S) has elements of G as its vertices, the edge-set is given
by {(g, gs) : g ∈ G, s ∈ S}. Two vertices g1 and g2 are adjacent if g2 = g1.s,
where s ∈ S. Note that a generating set S is minimal if S generates G but no
proper subset of S does.
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Theorem 2.2. All Cayley graphs are vertex transitive.

Definition 2.3. Let (V, ∗) be a group and A be any subset of V . Then the
Cayley graph induced by (V, ∗, A) is the graph G = (V,R), where R = {(x, y) :
x−1y ∈ A}.

Definition 2.4 ([23, 24]). A fuzzy subset µ on a set X is a map µ : X → [0, 1].
A fuzzy binary relation on X is a fuzzy subset µ on X ×X .

Definition 2.5 ([22]). Let V be a finite set, A =< V, µA > a fuzzy set of V and
B =< V × V, µB > a fuzzy relation on V , then the ordered pair (A,B) is called
a fuzzy digraph.

Definition 2.6 ([18]). Let (V, ∗) be a group and let µ be a fuzzy subset of V .
Then the fuzzy relation R on V × V defined by

R(x, y) = {(µ(x−1 ∗ y) for all x, y ∈ V }

induces a fuzzy graph G = (V,R), called the Cayley fuzzy graph induced by the
(V, ∗, µ).

Definition 2.7 ([8]). An intuitionistic fuzzy set (IFS, for short) on a universe
X is an object of the form

A = {< x, µA(x), νA(x) > |x ∈ X},

where µA(x) ∈ [0, 1] is called degree of membership of x in A and νA(x) ∈ [0, 1]
is called degree of nonmembership of x in A, and µA, νA satisfies the following
condition for all x ∈ X , µA(x) + νA(x) ≤ 1.

Definition 2.8. Let X be intuitionistic fuzzy set. For any subset A and for
α ∈ [0, 1], {x|µA(x) ≥ α, νA(x) ≤ α} is called α - cut of A. It is denoted by Aα.

Definition 2.9. Let X be intuitionistic fuzzy set. For any subset A and for
α ∈ [0, 1], {x|µA(x) > α, νA(x) < α} is called strong α - cut of A. It is denoted
by A+

α

Definition 2.10. Let X be intuitionistic fuzzy set. For any subset A of X , the
support of A is the set{x ∈ X |µA(x) ≥ 0, νA(x) > 0}. It is denoted by supp(A).
It can also be denoted as supp(A) = A+

0 .

Definition 2.11. An intuitionistic fuzzy relation R = (µR(x, y), νR(x, y)) in a
universe X ×X (R(X → X), for short) is an intuitionistic fuzzy set of the form

R = {< (x, y), µR(x, y), νR(x, y) > |(x, y) ∈ X ×X},

where µR : X × X → [0, 1] and νR : X × X → [0, 1]. The intuitionistic fuzzy
relation R satisfies µR(x, y) + νR(x, y) ≤ 1 for all x, y ∈ X .

Definition 2.12. Let R be an intuitionistic fuzzy relation on universe X . Then
R is called an intuitionistic fuzzy equivalence relation on X if it satisfies the
following conditions:
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(a) R is intuitionistic fuzzy reflexive, i.e., R(x, x) = (1, 0) for each x ∈ X ,
(b) R is intuitionistic fuzzy symmetric, i.e., R(x, y) = R(y, x) for any x,

y ∈ X ,
(c) R is intuitionistic fuzzy transitive, i.e., R(x, z) ≥

∨
y(R(x, y)

∧
R(y, z)).

Definition 2.13. Let R be an intuitionistic fuzzy relation on universe X . Then
R is called an intuitionistic fuzzy partial order relation on X if it satisfies the
following conditions:

(a) R is intuitionistic fuzzy reflexive, i.e., R(x, x) = (1, 0), for each x ∈ X ,
(b) R is intuitionistic fuzzy antisymmetric, i.e., for all x, y ∈ X R(x, y) 6=

R(y, x),
(c) R is intuitionistic fuzzy transitive, i.e., R(x, z) ≥

∨
y(R(x, y)

∧
R(y, z)).

Definition 2.14. Let R be an intuitionistic fuzzy relation on universe X . Then
R is called an intuitionistic fuzzy linear order relation on X if it satisfies the
following conditions:

(a) R is intuitionistic fuzzy partial relation,
(b) (R ∨R−1)(x, y) > 0 for all x, y ∈ X .

3. Cayley Intuitionistic Fuzzy Graphs

In this section, we introduce Cayley intuitionistic fuzzy graphs and prove that
all Cayley intuitionistic fuzzy graphs are regular.

Definition 3.1. An intuitionistic fuzzy digraph of a digraph G∗ is a pair G =
(A,B), where A =< V, µA, νA > is an intuitionistic fuzzy set in V and B =<
V × V, µB , νB > is an intuitionistic fuzzy relation on V such that

µB(xy) ≤ min(µA(x), µA(y)) and νB(xy) ≤ max(νA(x), νA(y)),

0 ≤ µB(xy)+νB(xy) ≤ 1 for all x, y ∈ V . We note that B may not be symmetric
relation.

Definition 3.2. Let G be an intuitionistic fuzzy digraph. The in-degree of
a vertex x in G is defined by ind(x) = (indµ(x), indν(x)), where indµ(x) =∑

y 6=x µA(xy) and indν(x) =
∑

y 6=x νA(xy). Similarly, the out-degree of a ver-

tex x in G is defined by outd(x) = (outdµ(x), outdν (x)), where outdµ(x) =∑
y 6=x µB(yx) and outdν(x) =

∑
y 6=x νB(yx). An intuitionistic fuzzy digraph in

which each vertex has same out-degree r is called an out-regular digraph with
index of out-regularity r. In-regular digraphs are defined similarly.

Example 3.3. Consider an intuitionistic fuzzy digraph G of G∗ = (V,E), where
V = {v1, v2, v3, v4}, E = {v1v2, v2v3, v3v4, v4v1}. By routine computations, it is
easy to see from Fig. 1 that the intuitionistic fuzzy digraph is nether out-regular
digraph nor in-regular digraph.

Definition 3.4. Let (G, ∗) be a group and let S be a nonempty finite subset
of G. Then the Cayley intuitionistic fuzzy graph G = (V,R) is an intuitionistic
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Figure 1. Intuitionistic fuzzy digraph

fuzzy graph with the vertex set V = G and let A = (µA, νA) be an intuitionistic
fuzzy subset of V . The intuitionistic fuzzy relation R(x, y) on V is defined by
R(x, y) = {(µA(x

−1y), µA(x
−1y))|x, y ∈ G and x−1y ∈ S}.

Example 3.5. Consider the group Z3 and take V = Z3 = {0, 1, 2}. Define
µA : V → [0, 1] and νA : V → [0, 1] by µA(0) = µA(1) = µA(2) = 0.5, νA(0) =
νA(1) = νA(2) = 0.4. Then the Cayley intuitionistic fuzzy graph G = (V,R)
induced by (Z3,+, A) is given by the following Table 1 and Figure 2.

Table 1. R(a, b) for Cayley intuitionistic fuzzy graph

a b (-a)+ b R(a,b)
0 0 0 (0.4, 0.4)
0 1 1 (0.3, 0.3)
0 2 2 (0.3, 0.3)
1 0 2 (0.3, 0.3)
1 1 0 (0.4, 0.4)
1 2 1 (0.3, 0.3)
2 0 1 (0.3, 0.3)
2 1 2 (0.3, 0.3)
2 2 0 (0.4, 0.4)

By routine computations, it is easy to see from Fig. 2 that G = (V,R) is a
Cayley intuitionistic fuzzy graph, and it is regular.

We notice that Cayley intuitionistic fuzzy graphs are actually intuitionistic
fuzzy digraphs. Furthermore, the relation R in the above definition describes
the strength of each directed edge. Let G denote an intuitionistic fuzzy graph
G = (V,R) induced by the triple (V, ∗, A).
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Figure 2. Cayley Intuitionistic fuzzy graph

Definition 3.6 ([15]). Let (S, ∗) be a semigroup. Let A′ = (µ′
A, ν

′
A) be an

intuitionistic fuzzy subset of S. Then A′ is said to be an intuitionistic fuzzy sub-
semigroup of S if for all x, y ∈ S, µA′(xy) ≥ min(µA′(x), µA′(y)) and νA′(xy) ≤
max(µA′(x), νA′ (y)).

Theorem 3.7. The Cayley intuitionistic fuzzy graph G is vertex transitive.

Proof. Let a, b ∈ V . Define ψ : V → V by ψ(x) = ba−1x ∀x ∈ V . Clearly, ψ is
a bijective map. For each x, y ∈ V ,

R(ψ(x), ψ(y)) = (Rµ(ψ(x), ψ(y)), Rν (ψ(x), ψ(y))).

Now Rµ(ψ(x), ψ(y)) = Rµ(ba
−1x, ba−1y)

= µA((ba
−1x)−1(ba−1x))

= µA(x
−1y)

= Rµ(x, y).

Rν(ψ(x), ψ(y)) = Rν(ba
−1x, ba−1y)

= νA((ba
−1x)−1(ba−1x))

= νA(x
−1y)

= Rν(x, y).

Therefore, R(ψ(x), ψ(y)) = R(x, y). Hence ψ is an automorphism on G. Also
ψ(a) = b. Hence G is vertex transitive. �
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Theorem 3.8. Every vertex transitive intuitionistic fuzzy graph is regular.

Proof. Let G = (V,R) be any vertex transitive intuitionistic fuzzy graph. Let
u,v ∈ V . Then there is an automorphism f on G such that f(u) = v. Note that

ind(u) =
∑

x∈V

R(x, u) =
∑

x∈V

(Rµ(x, u), Rν(x, u))

=
∑

x∈V

(Rµ(f(x), f(u)), Rν(f(x), f(u))

=
∑

x∈V

(Rµ(f(x), v), Rν(f(x), v))

=
∑

x∈V

(Rµ(y, v), Rν(y, v)

= ind(v),

outd(u) =
∑

x∈V

R(x, u) =
∑

x∈V

(Rµ(u, x), Rν(u, x))

=
∑

x∈V

(Rµ(f(u), f(x)), Rν(f(u), f(x))

=
∑

x∈V

(Rµ(v, f(x)), Rν (v, f(x))

=
∑

x∈V

(Rµ(v, y), Rν(v, y)

= outd(v).

Hence, G is regular. �

From Theorem 3.6 and Theorem 3.7, we have.

Theorem 3.9. Cayley intuitionistic fuzzy graphs are in-regular and out-regular.

Theorem 3.10. If for all u,v ∈ V , indµ(u) =
∑

v∈V µB(v) = outdµ(u) and
indν(u) =

∑
v∈V νB(v) = outdν(u) . Then Cayley intuitionistic fuzzy graphs are

regular.

Theorem 3.11. Let G = (V,R) be an intuitionistic fuzzy graph. Then intu-
itionistic fuzzy relation R is reflexive if and only if R(1, 1) = (1, 0), that is,
µA(1) = 1 and νA(1) = 0.

Proof. R is reflexive if and only if R(x, x) = (1, 0) for all x ∈ V . Now

R(x, x) = (µA(x
−1x), νA(x

−1x))

= (µA(1), νA(1)) for all x ∈ V.

Hence R is reflexive if and only if µA(1) = 1 and νA(0) = 0. �
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Theorem 3.12. Let G = (V,R) be an intuitionistic fuzzy graph. Then intuition-
istic fuzzy relation R is symmetric if and only if (µA(x), νA(x)) = (µA(x

−1), νA(x
−1))

for all x ∈ V .

Proof. Suppose that R is symmetric. Then for any x ∈ V ,

(µA(x), νA(x)) = (µA(x
−1x2), νA(x

−1x2))

= R(x, x2) = R(x2, x), since R is symmetric

= (µA((x
2)−1x), νA(x

2)−1x)

= (µA((x
−2x), νA(x

−2x)

= (µA((x
−1), νA(x

−1)

Conversely, suppose that (µA(x), νA(x)) = (µA(x
−1), νA(x

−1)) for all x ∈ V .
Then for all x, y ∈ V ,

R(x, y) = (µA(x
−1y), νA(x

−1y))

= (µA(y
−1x), νA(y

−1x))

= R(y, x).

Hence R is symmetric. �

Theorem 3.13. An intuitionistic fuzzy relation R is anti symmetric if and only
if {x : (µA(x), νA(x)) = (µA(x

−1), νA(x
−1))} = {(1, 1)}.

Proof. Suppose that R is anti symmetric and let x ∈ V . Then

(µR(x), νR(x)) = (µA(x
−1), νA(x

−1))which implies R(1, x) = R(x, 1)

Hence x = 1, [since R is anti symmetric.]

Conversely, suppose that {x : (µA(x), νA(x)) = (µA(x
−1), νA(x

−1))} = {(1, 0)}.
Then for any x, y ∈ V , R(x, y) = R(y, x) ⇔ (µA(x

−1y), νA(y
−1x)). This implies

that (µA(x
−1y), νA(y

−1x)) = (µA((x
−1y)−1), νA((x

−1y)−1)). That is x−1y = 1.
Equivalently, x = y. Hence R is anti symmetric. �

Theorem 3.14. An intuitionistic fuzzy relation R is transitive if and only if
(µA, νA) is an intuitionistic fuzzy subsemigroup of (G, ∗).

Proof. Suppose that R is transitive and let x, y ∈ V . Then R2 ≤ R. Now for
any x ∈ V , we have R(1, x) = (µA(x), νA(x)). This implies that ∨{R(1, z) ∧
R(z, xy)|z ∈ V } = R2(1, xy) ≤ R(1, xy). That is ∨{µR(z) ∧ µR(z

−1xy)|z ∈
V } ≤ µR(xy) and ∧{νR(z) ∨ νR(z

−1xy)|z ∈ V } ≥ νR(xy). Hence µA(xy) ≥
µA(x) ∧ µA(y) and νA(xy) ≤ µA(x) ∨ νA(y). Hence (µA, νA) is an intuitionistic
fuzzy subsemigroup of (S, ∗).
Conversely, suppose that A = (µA, νA) is an intuitionistic fuzzy subsemigroup
of (G, ∗). That is, for all x, y ∈ V µA(xy) ≥ µA(x) ∧ µA(y) and νA(xy) ≤
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νA(x) ∨ νA(y). Then for any x, y ∈ V ,

R2(x, y) = (R2
µ(x, y), R

2
ν(x, y))

R2
µ(x, y) = ∨{Rµ(x, z) ∧Rµ(z, y)|z ∈ V }

= ∨{µA(x
−1z) ∧ µA(z

−1y)|z ∈ V }

≤ µA(x
−1y)

= Rµ(x, y).

R2
ν(x, y) = ∧{Rν(x, z) ∨Rν(z, y) : z ∈ V }

= ∧{νA(x
−1z) ∨ νA(z

−1y) : z ∈ V }

≥ νA(x
−1y)

= Rν(x, y).

Hence R2
µ(x, y) ≤ Rµ(x, y) and R

2
ν(x, y) ≥ Rν(x, y). Hence R is transitive. �

We conclude that:

Theorem 3.15. An intuitionistic fuzzy relation R is a partial order if and only
if A = (µB, νB) is an intuitionistic fuzzy subsemigroup of (V, ∗) satisfying

(i) µA(1) = 1 and νA(1) = 0,
(ii) {x : (µA(x), νA(x)) = (µA(x

−1), νA(x
−1))} = {(1, 0)}.

Theorem 3.16. An intuitionistic fuzzy relation R is a linear order if and only
if (µB, νB) is an intuitionistic fuzzy subsemigroup of (V, ∗) satisfying

(i) µA(1) = 1 and νA(1) = 0,
(ii) {x|(µA(x), νA(x)) = (µA(x

−1), νA(x
−1))} = {(1, 0)}},

(ii) R2 ≤ R, that is,

{x, y | µR(x, y) ≥ µR◦R(x, y), νR(x, y) ≤ νR◦R(x, y)‘| x, y ∈ V },

(iv) {x | µA(x) ∨ µA(x
−1) > 0, νA(x) ∧ νA(x

−1) > 0}.

Proof. Suppose R is a linear order. Then by Theorem 3.15, the conditions (i),(ii)
and (iii) are satisfied. For any x ∈ V , (R ∨ R−1)(1, x) > 0. This implies that
R(1, x) ∨R(x, 1) > 0. Hence {x : µA(x) ∨ µA(x

−1) > 0, νA(x) ∧ νA(x
−1) > 0}.

Conversely, suppose that the conditions (i), (ii) and (iii) hold. Then by Theorem
3.15, R is partial order. Now for any x, y ∈ V , we have (x−1y), (y−1x) ∈ V .
Then by condition (iv), {x : µA(x) ∨ µA(x

−1) > 0, νA(x) ∧ νA(x
−1) > 0}. That

is R(1, x) ∨ R(x, 1) > 0. Hence (R ∨ R−1)(x, y) > 0. Therefore R is linear
order. �

Theorem 3.17. An intuitionistic fuzzy relation R is a equivalence relation if
and only if (µA, νA) is an intuitionistic fuzzy sub semigroup of (G, ∗) satisfying

(i) µA(1) = 1 and νA(1) = 0,
(ii) (µA(x), νA(x)) = (µA(x

−1), νA(x
−1)) for all x ∈ V .

Proof. Proof follows from Theorem 3.15 and Theorem 3.16. �
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4. Cayley graphs induced by Cayley intuitionistic fuzzy graphs

Definition 4.1. Let (V, ∗) be a group, let A be an intuitionistic fuzzy set of V
and G = (V,R) be the Cayley intuitionistic fuzzy graph induced by (V, ∗, A).
For any α ∈ [0, 1], let Aα be α− cut of A and A+

α be the strong α− cut of A.
We define SAα

and SA+
α
as SAα

= {(x, y) ∈ V × V : x−1y ∈ Aα},

SA+
α
= {(x, y) ∈ V ×V : x−1y ∈ A+

α}. Then it is clear that for any α ∈ [0, 1], the

Cayley intuitionistic fuzzy graph induced by (V, ∗, A) induces the Cayley graphs
(V, SAα

) and (V, SA+
α
).

Note that for any α ∈ [0, 1], SAα
= Rα and SA+

α
= R+

α . Thus for any α ∈ [0, 1],

the Cayley intuitionistic fuzzy graph (V,R) induced by Cayley intuitionistic
graphs (V,Rα) and (V,R+

α ).

Remark 4.1. Let G = (V,R) be any intuitionistic fuzzy graph, then G is con-
nected(weakly connected, semi-connected, locally connected or quasi connected)
if and only if the induce fuzzy graph (V,R+

0 ) is connected(weakly connected,
semi-connected, locally connected or quasi connected).

We now observe the following definition and lemma to study different types
of connectedness of G.

Definition 4.2. Let (L, ∗) be a semigroup and let A = (µA, νA) be an intu-
itionistic fuzzy subset of L. Then the subsemigroup generated by A is the meet
of all intuitionistic fuzzy subsemigroups of L which contains A. It is denoted by
< A >.

Example 4.3. Consider L = Z3 and A = (µA, νA) as in Example 3.5. Then
< A > is given by < µA > (0) = 1, < νA > (0) = 0, and < µA > (y) = 0.5,
< νA > (y) = 0.5 for y = 1, 2.

Lemma 4.4. Let (L, ∗) be a semigroup and A = (µA, νA) be an intuitionistic
fuzzy subset of L. Then intuitionistic fuzzy subset < A > is precisely given by <
µA > (x) = ∨{µA(x1)∧µA(x2)∧ . . . ∧µA(xn) : x = x1x2 . . . xn with µA(xi) >
0 for i = 1, 2, . . . , n}, < νA > (x) = ∧{νA(x1) ∨ νA(x2) ∨ . . . ∨ νA(xn) : x =
x1x2 . . . xn with νA(xi) > 0 for i = 1, 2, . . . , n} for any x ∈ L.

Proof. Let A′ = (µ′
A, ν

′
A) be an intuitionistic fuzzy subset of L defined by

µ′
A(x) = ∨{µA(x1) ∧ µA(x2) ∧ . . . ∧ µA(xn) : x = x1x2 . . . xn with µA(xi) >

0 for i = 1, 2, . . . , n}, ν′A(x) = ∧{νA(x1) ∨ νA(x2) ∨ . . . ∨ νA(xn) : x =
x1x2 . . . xn with νA(xi) > 0 for i = 1, 2, . . . , n}, for any x ∈ L. Let x, y ∈ L.
If µA(x) = 0 or µA(y) = 0, then µA(x)∧µA(y) = 0 and νA(x) = 0 or νA(y) = 0,
then νA(x) ∨ νA(y) = 0. Therefore, µ′

A(xy) ≥ µA(x) ∧ µA(y) and ν′A(xy) ≤
νA(x) ∨ νA(y). Again , if µA(x) 6= 0, νA(x) 6= 0, then by definition of µ′

A(x)
and ν′A(x), we have µ′

A(xy) ≥ µA(x) ∧ µA(y) and ν′A(xy) ≤ νA(x) ∨ νA(y).
Hence (µ′

A, ν
′
A) is an intuitionistic fuzzy subsemigroup of L containing (µA, νA).

Now let L′ be any intuitionistic fuzzy subsemigroup of L′ containing (µA, νA).
Then for any x ∈ L with x = x1x2 . . . xn with µA(xi) > 0, νA(xi) > 0,
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for i = 1, 2, . . . , n, we have µL′(xi) ≥ µL′(x1) ∧ µL′(x2) ∧ . . . ∧ µL′(xn) ≥
µA(x1)∧µA(x2)∧ . . . ∧µA(xn) and νL′(xi) ≤ νL′(x1)∧νL′ (x2)∧ . . . ∧νL′(xn) ≤
νA(x1)∧νA(x2)∧ . . . ∧νA(xn). Thus µL′(x) ≥ ∨{µA(x1)∧µA(x2)∧ . . . ∧µA(xn) :
x = x1x2 . . . xn with µA(xi) > 0 for i = 1, 2, . . . , n}, νL′(x) ≤ ∧{νA(x1) ∨
νA(x2)∨ . . . ∨ νA(xn) : x = x1x2 . . . xn with νA(xi) > 0 for i = 1, 2, . . . , n},
for any x ∈ L. Hence µL′(x) ≥ µ′

A(x), νL′(x) ≤ ν′A(x), for all x ∈ L. Thus
µ′
A(x) ≤ µL′(x), ν′A(x) ≥ µA(x). Thus A′ = (µ′

A, ν
′
A) is the meet of all intu-

itionistic fuzzy subsemigroup containing (µA, νA). �

Theorem 4.5. Let (L, ∗) be a semigroup and A = (µA, νA) be an intuitionistic
fuzzy subset of L. Then for any α ∈ [0, 1], (< µα >,< να >) = (< µ >α, < ν >α

) and (< µ+
α >,< ν+α >) = (< µ >+

α , < ν >+
α ), where (< µα >,< να >) denotes

the subsemigroup generated by (µα, να) and < (µ, ν) > denotes intuitionistic
fuzzy subsemigroup generated by (µ, ν).

Proof.

x ∈ (< µ >α, < ν >α) ⇔ there exists x1, x2, . . . , xn in (µα, να) such that

x = x1x2 . . . xn

⇔ there exists x1, x2, . . . , xn in L such that µ(xi) ≥ α,

ν(xi) ≤ α, for all i = 1, 2, . . . , n and x = x1x2 . . . xn

⇔< µ > (x) ≥ α and < ν > (x) ≤ α

⇔ x ∈< µ >α and x ∈< ν >α .

Therefore, (< µα >,< να >) = (< µ >α, < ν >α). Similarly, we have (< µ+
α >

,< ν+α >) = (< µ >+
α , < ν >+

α ). �

Remark 4.2. Let (L, ∗) be a semigroup and A = (µA, νA) be an intuitionistic
fuzzy subset of L. Then by Theorem 4.5, we have < supp(A) >= supp < A >.

5. Connectedness in Cayley intuitionistic fuzzy graphs

In this section, first we state the the basic Theorems which are used to prove
the forthcoming Theorems.
Let G denotes the Cayley intuitionistic fuzzy graphs G = (V,R) induced by
(V, ∗, A) and G′ = (V ′, R′) be the crisp Cayley graph induced by (V ′, ∗, A).
Then we conclude the following results.

Theorem 5.1. Let A be any subset of V ′ and G′ = (V ′, R′) be the Cayley graph
induced by (V ′, ∗, A). Then G′ is connected if and only if < A >⊇ V − v1.

Theorem 5.2. Let A be any subset of a set V ′ and G′ = (V ′, R′) be the Cayley
graph induced by the triplet (V ′, ∗, A). Then G′ is weakly connected if and only
if < A ∪ A−1 >⊇ V − v1, where A

−1 = {x−1 : x ∈ A}.

Theorem 5.3. Let A be any subset of a set V ′ and G′ = (V ′, R′) be the Cayley
graph induced by the triplet (V ′, ∗, A). Then G′ is semi-connected if and only if
< A > ∪ < A−1 >⊇ V − v1, where A

−1 = {x−1 : x ∈ A}.
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Theorem 5.4. Let G′ = (V ′, R′) be the Cayley graph induced by the triplet
(V ′, ∗, A). Then G′ is locally connected if and only if < A >=< A−1 >, where
A−1 = {x−1 : x ∈ A}.

Theorem 5.5. Let G′ = (V ′, R′) be the Cayley graph induced by the triplet
(V ′, ∗, A), where V ′ is finite. Then G′ is quasi connected if and only if it is
connected.

Definition 5.6. Let (L, ∗) be a group and A be an intuitionistic fuzzy subset
of L. Then we define A−1 as intuitionistic fuzzy subset of L given by A−1(x) =
A(x−1) for all x ∈ L.

Theorem 5.7. G is connected if and only if supp < A >⊇ V − v1.

Proof. By Remark 4.1,4.2 and by Theorem 5.1,

G is connected ⇔ (V,R+
0 )is connected

⇔< A+
0 >⊇ V − v1

⇔< supp(A) >⊇ V − v1

⇔ supp < A >⊇ V − v1.

�

Theorem 5.8. G is weakly connected if and only if supp (< A∪A−1 >) ⊇ V −v1.

Proof. By Remark 4.1,4.2 and by Theorem 5.2,

G is weakly connected ⇔ (V,R+
0 )is weakly connected

⇔< A+
0 ∪ (A+

0 )
−1 >⊇ V − v1

⇔< supp(A) ∪ supp(A)−1 >⊇ V − v1

⇔ supp < A ∪ (A)−1 >⊇ V − v1

⇔ supp < A ∪ A−1 >⊇ V − v1.

�

Theorem 5.9. G is semi- connected if and only if supp (< A > ∪ < A−1 >) ⊇
V − v1.

Proof. By Remark 4.1,4.2 and by Theorem 5.3,

G is semi- connected ⇔ (V,R+
0 )is semi connected

⇔< A+
0 > ∪ < (A+

0 )
−1 >⊇ V − v1

⇔< supp(A) > ∪ < supp(A)−1 >⊇ V − v1

⇔ supp < A > ∪ < (A)−1 >⊇ V − v1

⇔ supp(< A > ∪ < A−1 >) ⊇ V − v1.

�



Cayley intuitionistic fuzzy graphs 839

Theorem 5.10. Let G is locally connected if and only if supp(< A >) = supp(<
A−1 >).

Proof. By Remark 4.1,4.2 and by Theorem 5.4,

G is locally connected ⇔ (V,R+
0 ) is locally connected

⇔< A+
0 >=< (A+

0 )
−1 >

⇔< supp(A) >=< supp(A)−1 >

⇔ supp < A >= supp < A−1 >

�

Theorem 5.11. A finite Cayley intuitionistic fuzzy graph G is quasi connected
if and only if it is connected.

Proof. By Remark 4.1,4.2 and by Theorem 5.5,

G is quasi-connected ⇔ (V,R+
0 ) is quasi-connected

⇔ (V,R+
0 ) is connected

⇔ G is connected.

�

6. Different types of α-connectedness in Cayley intuitionistic fuzzy

graphs

Definition 6.1. The µ−strength of a path P = v1, v2, . . . , vn is defined as
min(µ2(vi, vj)) for all i and j and is denoted by Sµ. The ν−strength of a path
P = v1, v2, . . . , vn is defined as max(ν2(vi, vj)) for all i and j and is denoted
by Sν . The strength of P = {µ− strength, µ− strength}

Definition 6.2. Let G be an intuitionistic fuzzy digraph. Then G is said to be:

(i) α−connected if for every pair of vertices x, y ∈ G, there is a path P

from x to y such that strength (P ) ≥ α,
(ii) weakly α−connected if an intuitionistic fuzzy graph (V,R ∨ R−1) is α−

connected,
(iii) semi α−connected if for every x, y ∈ V , there is a path of strength

greater than or equal to α from x to y or from y to x in G,
(iv) locally α−connected if for every pair of vertices x and y, there is a path

P of strength greater than or equal to α from x to y whenever there is
a path P ′ of strength greater than or equal to α from y to x,

(v) quasi α−connected if for every pair x, y ∈ V , there is some z ∈ V such
that there is directed path from z to x of strength greater than or equal
to α and there is a directed path from z to y of strength greater than or
equal to α.
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Remark 6.1. Let G = (V,R) be any intuitionistic fuzzy graph, then G is α-
connected (weakly α-connected, semi α-connected, locally α-connected or quasi
α-connected) if and only if the induce intuitionistic fuzzy graph (V,R+

0 ) is con-
nected(weakly connected, semi-connected, locally connected or quasi connected).

Let G denotes the Cayley intuitionistic fuzzy graphs G = (V,R) induced by
(V, ∗, A). Also for any α ∈ [0, 1], then we have the following results.

Theorem 6.3. G is α−connected if and only if < A >α⊇ V − v1.

Proof. By Remark 6.1 and by Theorems 4.5, 5.7,

G is connected ⇔ (V,Rα)is connected

⇔< Aα >⊇ V − v1

⇔< A >α⊇ V − v1.

�

Theorem 6.4. G is weakly α−connected if and only if < A∪A−1 >α⊇ V − v1.

Proof. By Remark 6.1 and by Theorems 4.5, 5.8,

G is weakly connected ⇔ (V,Rα)is weakly connected

⇔< Aα ∪ (Aα)
−1 >⊇ V − v1

⇔< (A ∪ A−1)α >⊇ V − v1

⇔< A ∪ (A)−1 >α⊇ V − v1.

�

Theorem 6.5. G is semi α−connected if and only if (< A >α ∪ < A−1 >α) ⊇
V − v1.

Proof. By Remark 6.1 and by Theorems 4.5, 5.9,

G is semi α−connected ⇔ (V,R+
0 ) is semi α−connected

⇔< Aα > ∪ < A−1
α >⊇ V − v1

⇔< A >α ∪ < A−1 >α⊇ V − v1.

�

Theorem 6.6. Let G is locally α−connected if and only if < A >α=< A−1
α >.

Proof. By Remark 6.1 and by Theorems 4.5, 5.10,

G is locally α−connected ⇔ (V,Rα−)is locally connected

⇔< Aα >=< A−1
α >

⇔< A >α=< A−1 >α .

�
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Theorem 6.7. A finite Cayley intuitionistic fuzzy graph G is quasi α−connected
if and only if it is α−connected.

Proof. By Remark 6.1 and by Theorems 4.5, 5.11,

G is quasi α−connected ⇔ (V,R+
α )is quasi−connected

⇔ (V,R+
α ) is connected

⇔ G is α−connected.

This completes the proof. �
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