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Abstract. In this paper a higher order iterative algorithm is developed
for an unconstrained multivariate optimization problem. Taylor expansion
of matrix valued function is used to prove the cubic order convergence of
the proposed algorithm. The methodology is supported with numerical
and graphical illustration.
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1. Introduction

Classical Newton method is one of the popular gradient based iterative meth-
ods and widely used for its quadratic convergence property. In recent years, a lot
of research is going on for developing higher order iterative algorithms which are
based on the logic of Newton’s method, in different areas of numerical computa-
tions. Some important higher order iterative methods for finding the root of a
nonlinear equation are seen in the literature. Homeier proposed a modification
of Newoton method for finding the zero of univariate functions that converges
cubically [6, 7]. Kou et al. have proposed a cubic order convergent algorithm for
solving nonlinear equations [8] and also some variant of Ostrowski’s method with
seventh-order convergence [9]. Chun has contributed on the schemes with fourth
order convergence and their family [2, 3]. Liu et. al have proposed eighth order
method with high efficiency index [10] and Cordero et. al have proposed sixth
and seventh order schemes [4] for finding root of univariate nonlinear equation.
Employing any of these iterative methods one can optimize a univariate, nonlin-
ear differentiable function more efficiently. However in this paper, an attempt
is made to develop a higher order iterative process for optimizing a multivari-
ate function. For developing this scheme, trapezoidal approximation of definite
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integral is used and classical Newton method is considered in an implicit form.
Theory of Taylor expansion of matrix valued function has helped to establish
the convergence of the algorithm. It is proved that the proposed algorithm has
cubic order convergence property.

Calculus of matrix valued functions has been widely used in various fields
of mathematics. This theory has been developed in several directions by many
researchers like Turnbull [12, 13], Dwyer et. al [5], Vetter [14, 15]. Theory of
matrix calculus by Vetter [14, 15], which uses Kronecker algebra, is the most
popular one for its consistency and completeness. In the later period it has been
adopted by researchers from various fields like system theory [1], sensitivity anal-
ysis [18], stochastic perturbation [17], statistical models [20, 16]), econometric
forecasting [11], neural network [19] etc. In this paper we use the Taylor ex-
pansion of a matrix valued function as developed by Vetter [15] to prove the
convergence of our algorithm.

Content of this paper is summarized in the following sections. In Section 2,
the new scheme is proposed. In Section 3, detailed convergence analysis of the
proposed scheme is given. A comparative study between the classical Newton
method and the proposed method is discussed in Section 4. Finally, a table with
several test functions and a graphical illustration have been given in Appendix.

2. Proposing a new multivariate optimization algorithm

Consider an optimization problem

(P ) min
x∈Rs

f(x) where, f : Rs → R is a sufficiently differentiable function.

Denote xn ∈ R
s as xn = (xn

1 , x
n
2 , x

n
3 , . . . , xn

s ) and φ(θ) = ∇f(xn + θ(x− xn)).

Then φ(0) = ∇f(xn), φ(1) = ∇f(x), and φ
′

(θ) = [∇2f(xn+θ(x−xn))](x−xn).
From fundamental theorem of calculus,

∇f(x)−∇f(xn) =

∫ 1

0

φ
′

(θ)dθ =

∫ 1

0

∇2f(xn + θ(x− xn))(x − xn)dθ.

So

∇f(x) = ∇f(xn) +

∫ 1

0

∇2f(xn + θ(x− xn))(x − xn)dθ.

Hence

∂f(x)

∂xi
=

∂f(xn)

∂xi
+

s∑

j=1

∫ 1

0

∂2f(xn + θ(x− xn))

∂xi∂xj
(xj − xn

j )dθ

( Here
∫
is used componentwise )

≈
∂f(xn)

∂xi
+

1

2

s∑

j=1

[
∂2f

∂xi∂xj
(xn) +

∂2f

∂xi∂xj
(x)

]
(xj − xn

j )

(Using Trapezoidal approximation).
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Hence ∇f(x) ≈ ∇f(xn) + 1
2 [∇

2f(x) +∇2f(xn)]s×s(x − xn).

Let xn+1 be the root of the equation

∇f(xn) +
1

2
[∇2f(x) +∇2f(xn)]s×s(x− xn) = 0.

Thus,

xn+1 ≈ xn − 2[∇2f(xn+1) +∇2f(xn)]−1∇f(xn).

This is an implicit functional relation in xn+1 at xn. We replace ∇2f(xn+1)
by ∇2f(zn), where zn is the next iteration point, derived by classical Newton
method at xn. Then the new iteration scheme becomes

xn+1 = xn − 2[∇2f(zn) +∇2f(xn)]−1∇f(xn)

where zn = xn − [∇2f(xn)]−1∇f(xn).
(1)

3. Convergence analysis of the new scheme

To study the convergence analysis of the new scheme (1), following notations
and definitions are explained as prerequisites in Subsection 3.1. In the Subsection
3.2, some new definitions and lemmas are introduced which will be used to prove
the convergence theorem in Subsection 3.3.

3.1. Prerequisite.

Is = s× s dimensional identity matrix.
ρ(A)= Spectral radius of the matrix A .
A⊗B = Kronecker product of two matrices A and B.
For matrices A = (aij)m×n and B = (bij)s×t, A⊗B = (aijB)ms×nt .
A×k = A⊗A⊗ . . .⊗A (The kth Kronecker power of A).
AB = Matrix product of two matrices A and B.
For the matrices A, B, C and D the following properties hold.

(P1) A⊗ (B + C) = A⊗B +A⊗ C.
(P2) (A+B)⊗ C = A⊗ C +B ⊗ C.
(P3) (kA)⊗B = A⊗ (kB) = k(A⊗B), k is a scalar.
(P4) (A⊗B)⊗ C = A⊗ (B ⊗ C).
(P5) (A ⊗ B)(C ⊗ D) = AC ⊗ BD, matrix dimension must agree to hold the

matrix product AC and BD.
(P6) (A B)⊗ Is= (A⊗ Is)(B ⊗ Is) (This follows from (P5)).

Definition 3.1 (Matrix function). A matrix function Ap×q : R
s×t → R

p×q

maps a matrix of s× t dimension to a matrix of p× q dimension.

Definition 3.2 (Matrix derivative [15]). The derivative structure of a matrix-
valued function Ap×q(B) with respect to a scalar bkl and with respect to the
matrix Bs×t are defined as
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Dbkl
A (B) =

(

∂aij

∂bkl

)

i ↓= 1, 2, 3, . . . , p
j →= 1, 2, 3, . . . , q

=

















∂a11

∂bkl

∂a12

∂bkl
. . .

∂a1q

∂bkl
∂a21

∂bkl

∂a22

∂bkl
. . .

∂a2q

∂bkl

. . . .

. . . .
∂ap1

∂bkl

∂ap2

∂bkl
. . .

∂apq

∂bkl

















DBA (B) = (Dbkl
A )

k ↓= 1, 2, 3, . . . , s
l →= 1, 2, 3, . . . , t

=

























Db11A Db12A . . . Db1tA

−−−− −−−− −−−− −−−−

Db2l
A Db22A . . . Db2tA

−−−− −−−− −−−− −−−−

. . . .

. . . .

−−−− −−−− −−−− −−−−

Dbs1A Dbs2A . . . DbstA

























Higher order derivatives are given as

D
n
Bn A (B) = DB(DB(. . . (DB A (B)) . . .))︸ ︷︷ ︸ n− times. (2)

Matrix Taylor Expansion: The Taylor expansion structures for a matrix
valued function A (u) of a column vector u ∈ R

s about the column vector u ∈ R
s

described in [15] is:

Ap×q(u) = A(u) +

M∑

m=1

1

m!
D

m
uTmA(u)((u − u)×m ⊗ Iq) +RM+1(u, u), (3)

where RM+1(u, u) =
1
m!

∫ u

ξ=u D
m+1

uTm+1A(ξ)(Is ⊗ (u− ξ)×m ⊗ Iq)(dξ ⊗ Iq).

3.2. New Definition and Lemmas.

Definition 3.3. Let f : R
s → R be a sufficiently differentiable function, gradi-

ent of f be ∇f . A function ∇̃nf : R
s → R

s×sn−1

is defined as

∇̃nf(x) = D
n−1

xTn−1 (∇f(x)), n = 2, 3, 4 . . . ,

where D
n−1

xTn−1 is as defined in (2). xT is the row vector (x1, x2, . . . , xs).

Lemma 3.4. ∇̃2f = ∇2f.

Proof. This result follows from Definition 3.3 directly. �

Lemma 3.5. Dn
xTn (∇2f(x)) = ∇̃n+2f(x).

Proof.

D
n
xTn (∇2f) = D

n
xTn (∇̃2f(x)) (using Lemma 3.4)

= D
n
xTn D(∇f(x)) (using Definition 3.3)

= D
n+1

xTn+1 (∇f(x)) (using (2))

= ∇̃n+2f(x) (using Definition 3.3)

�
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Lemma 3.6. If a ∈ R
m and b ∈ R

n, then ‖ a ⊗ b ‖ = ‖ a ‖‖ b ‖ where ‖ . ‖ is
Euclidean norm.

Proof. For a = (a1, a2, . . . , am) and b = (b1, b2, . . . , bn),

a⊗ b = (a1b1, a1b2, . . . , a1bn, a2b1, a2b2, . . . , a2bn, . . . , amb1, amb2, . . . , ambn)
T
nm×1.

So

‖ a⊗ b ‖ =
{
a21
(
b21 + b22 + . . .+ b2n

)
+ a22

(
b21 + b22 + . . .+ b2n

)

+ . . .+ a2m(b21 + b22 + . . .+ b2n)
}1/2

=

(
m∑

i=1

a2i

)1/2



n∑

j=1

b2j




1/2

= ‖ a ‖ . ‖ b ‖

�

Lemma 3.7. If u ∈ R
s, then ‖ u×n ‖ = ‖ u ‖n for n ∈ N.

Proof. For n = 1, ‖ u×1 ‖ = ‖ u ‖ = ‖ u ‖1.
Suppose ‖ u×k ‖ = ‖ u ‖k for some k. Then for n = k + 1,

‖ u×k+1 ‖ =‖ u×k ⊗ u ‖=‖ u×k ‖ . ‖ u ‖ (using Lemma 3.6)

=‖ u ‖k . ‖ u ‖= ‖ u ‖k+1

�

Lemma 3.8. If u ∈ R
s, then (u×n ⊗ Is)(u

×1 ⊗ I1) = u×(n+1) for n ∈ N.

Proof. For n = 1, (u×1 ⊗ Is)(u
×1 ⊗ I1) = (u×1 ⊗ Is)u = u×2.

Suppose (u×k ⊗ Is)(u
×1 ⊗ I1) = u×(k+1) for some k. Then for n = k + 1,

(u×(k+1) ⊗ Is)(u
×1 ⊗ I1) = ((u ⊗ u×k))⊗ Is)(u

×1 ⊗ I1)

= u⊗ (u×k ⊗ Is)(u
×1 ⊗ I1)

= u⊗ u×(k+1) = u×(k+2).

�

3.3. Third order convergence of the algorithm.

Let α ∈ Rs be the solution of ∇f = 0. Using matrix Taylor expansion (3)
about α, ∇f(x) and ∇2f(x) can be expressed as

∇fs×1(x) = ∇f(α) +
M∑

m=1

1

m!
D

m
xTm∇f(α)((x− α)×m

⊗ I1) +R
1
M+1(α, x),

where R
1
M+1(α, x) =

1

m!

∫ x

ξ=α

D
m+1

bT
m+1∇f(ξ)(Is ⊗ (x− ξ)×m

⊗ Iq)(dξ ⊗ Iq);

(4)
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∇
2
fs×s(x) = ∇

2
f(α) +

M∑

m=1

1

m!
D

m
xTm∇

2
f(α)((x− α)×m

⊗ Is) +R
2
M+1(α, x),

where R
2
M+1(α, x) =

1

m!

∫ x

ξ=α

D
m+1

bT
m+1∇f(ξ)(Is ⊗ (x− ξ)×m

⊗ Iq)(dξ ⊗ Iq).

(5)

Using Definition 3.3 and replacing x by xn, (4) can be rewritten as

∇f(xn) = ∇f(α) +
M∑

m=1

1

m!
∇̃m+1f(α)((xn − α)×m ⊗ I1) +R1

M+1(x
n, α)

=

M∑

m=1

1

m!
∇̃m+1f(α)((xn − α)×m ⊗ I1) +R1

M+1(x
n, α)

(Since,∇f(α) = 0)

(6)

Using Lemma 3.5 and replacing x by xn, (5) can be rewritten as

∇2f(xn) = ∇̃2f(α) +

M∑

m=1

1

m!
∇̃m+2f(α)((xn − α)×m ⊗ Is) +R2

M+1(x
n, α). (7)

Denote

Cm ,
1

m!
[∇̃2f(α)]−1[∇̃m+1f(α)] (8)

Neglecting remainder terms for large M and using (8) we rewrite (6) and (7) as

∇f(xn) = ∇̃2f(α)

M∑

m=1

Cm((xn − α)×m ⊗ I1), (9)

∇2f(xn) = ∇̃2f(α)

[
Is +

M∑

m=1

(m+ 1) Cm+1((x
n − α)×m ⊗ Is)

]
(10)

respectively. Now, (10) can be written as

∇
2
f(xn) = ∇̃

2
f(α) (Is +B) , where B =

M∑

m=1

(m+ 1) Cm+1((x
n
− α)×m

⊗ Is). (11)

For large n, xn is in a sufficiently close neighborhood of α such that ρ(B) < 1.
So from (11),

[∇2f(xn)]−1 = (Is+B)−1[∇̃2f(α)]−1 = (Is−B+B2−B3+. . .)[∇̃2f(α)]−1. (12)

From (9) and (12), we have

[∇2f(xn)]−1∇f(xn)

= (Is −B +B2 − . . .)[∇̃2f(α)]−1[∇̃2f(α)]

M∑

m=1

Cm((xn − α)×m ⊗ I1)

= (Is −B +B2 − . . .)
M∑

m=1

Cm((xn − α)×m ⊗ I1)
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=

M∑

m=1

Cm((xn − α)×m ⊗ I1) +

∞∑

k=1

(−1)kBk
M∑

m=1

Cm((xn − α)×m ⊗ I1)

=

M∑

m=1

Cm((xn − α)×m ⊗ I1)

+

∞∑

k=1

(−1)k

[
M∑

m=1

(m+ 1) Cm+1((x
n − α)×m ⊗ Is)

]k M∑

m=1

Cm((xn − α)×m ⊗ I1)

=
M∑

m=1

Cm((xn − α)×m ⊗ I1)

+

[
−

M∑

m=1

(m+ 1) Cm+1((x
n − α)×m ⊗ Is)

][
M∑

m=1

Cm((xn − α)×m ⊗ I1)

]

+

[
M∑

m=1

(m+ 1) Cm+1((x
n − α)×m ⊗ Is)

]2 [ M∑

m=1

Cm((xn − α)×m ⊗ I1)

]
+ . . .

Expanding each term in the right hand side of the above expression, we have

[∇2f(xn)]−1∇f(xn)

=
[
C1((x

n − α)×1 ⊗ I1) + C2((x
n − α)×2 ⊗ I1) + C3((x

n − α)×3 ⊗ I1) + . . .
]

+
[{
−2 C2((x

n − α)×1 ⊗ Is)− 3 C3((x
n − α)×2 ⊗ Is)− . . .

}
.

{
C1((x

n − α)×1 ⊗ I1) + C2((x
n − α)×2 ⊗ I1) + . . .

}]

+
[{(

2 C2((x
n − α)×1 ⊗ Is)

) (
2 C2((x

n − α)×1 ⊗ Is)
)
+ . . .

}
.

C1((x
n − α)×1 ⊗ I1) + . . .

]
+ . . .

Rearranging the terms in the right side of the above expression according to
Kronecker power,

[∇2f(xn)]−1∇f(xn) =
[
C1((x

n − α)×1 ⊗ I1)
]
+

[
C2((x

n − α)×2 ⊗ I1)− 2 C2((x
n − α)×1 ⊗ Is) C1((x

n − α)×1 ⊗ I1)
]
+

[
C3((x

n − α)×3 ⊗ I1)− 2 C2((x
n − α)×1 ⊗ Is) C2((x

n − α)×2 ⊗ I1)

− 3C3((x
n − α)×2 ⊗ Is) C1((x

n − α)×1 ⊗ I1)

+4C2((x
n − α)×1 ⊗ Is) C2((x

n − α)×1 ⊗ Is) C1((x
n − α)×1 ⊗ I1)

]
+ . . .

C1 = 1
1!

[
∇̃2f(α)

]−1

s×s

[
∇̃2f(α)

]

s×s
= Is. Using Lemma 3.8, putting C1 = Is and

rearranging the terms according to Kronecker power in the above expression, we
get

[
∇

2
f(xn)

]−1
∇f(xn)

= (xn
− α)×1

⊗ I1 +
[
C2((x

n
− α)×2

⊗ I1)− 2 C2((x
n
− α)×2

⊗ I1)
]
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+
[
C3((x

n
− α)×3

⊗ I1)− 2 C2((x
n
− α)×1

⊗ Is) C2((x
n
− α)×2

⊗ I1)

−3 C3((x
n
− α)×3

⊗ I1) + 4 C2((x
n
− α)×1

⊗ Is) C2((x
n
− α)×2

⊗ I1)
]
+ . . . (13)

= (xn
− α)×1

⊗ I1 +
[
−C2((x

n
− α)×2

⊗ I1)
]

+
[
2 C2((x

n
− α)×1

⊗ Is) C2((x
n
− α)×2

⊗ I1)− 2 C3((x
n
− α)×3

⊗ I1)
]
+ . . .

zn is the classical Newton iterate at xn (See (1)). Replacing xn by zn in (10),
we get

∇2f(xn) +∇2f(zn)

=
[
∇̃2f(α)

] [
2Is +

M∑

m=1

(m+ 1) Cm+1

{
(xn − α)×m + (zn − α)×m

}
⊗ Is

]
.

Substituting the expression of zn from (1) in the above expression, we have

∇
2
f(xn) +∇

2
f(zn) =

[
∇̃

2
f(α)

] [
2Is +

M∑

m=1

(m+ 1) Cm+1

{(
(xn

− α)×m+

(xn
− [∇2

f(xn)]−1
∇f(xn)− α)×m

)
⊗ Is

}
] (14)

Denote

D , xn − [∇2f(xn)]−1∇f(xn)− α

= C2((x
n − α)×2 ⊗ I1)− 2 C2((x

n − α)×1 ⊗ Is) C2((x
n − α)×2 ⊗ I1)

+ 2 C3((x
n − α)×3 ⊗ I1) + . . .

(15)

and

P ,
1

2

M∑

m=1

(m+ 1) Cm+1

{(
(xn − α)×m +D×m

)
⊗ Is

}

= C2((x
n − α)×1 +D×1)⊗ Is +

3

2
C3((x

n − α)×2 +D×2)⊗ Is

+ 2 C4((x
n − α)×3 +D×3)⊗ Is + . . .

One may observe that in the expression of D in (15) the lowest Kronecker power
of (xn − α) is 2. As we are writing the terms which produce at most the third
kronecker power of (xn−α), there is no need of writing D×2 and D×3 explicitly.
After simplifying, expression for P becomes

P = C2

{
(xn − α)×1 ⊗ Is

}
+ C2

{
C2(x

n − α)×2 ⊗ Is
}

− C2

{
2 C2((x

n − α)×1 ⊗ Is) C2((x
n − α)×2 ⊗ I1)

}

+ C2

{
2 C3(x

n − α)×3 ⊗ Is
}
+

3

2
C3

{
(xn − α)×2 ⊗ Is

}

+ 2 C4

{
(xn − α)×3 ⊗ Is

}
+ . . .

(16)
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Hence (14) can be expressed as

1

2

[
∇2f(xn) +∇2f(zn)

]
=
[
∇̃2f(α)

]
(Is + P ) .

So small
[
1

2

(
∇2f(xn) +∇2f(zn)

)]−1

∇f(xn)

= (Is + P )−1
[
∇̃2f(α)

]−1

∇f(xn)

= (Is + P )−1
M∑

m=1

Cm((xn − α)×m ⊗ I1)

(Substituting the value of ∇f(xn) from (9))

=
(
Is − P + P 2 − . . .

) M∑

m=1

Cm((xn − α)×m ⊗ I1)

(For large n, xn is in a sufficiently close neighborhood of α, so ρ(P ) < 1.
Hence (Is + P )−1 = Is − P + P 2 − · · · . Substituting the value of P ,

[
1

2

(
∇

2
f(xn) +∇

2
f(zn)

)]−1

∇f(xn)

=
[
C1((x

n
− α)×1

⊗ I1) +C2((x
n
− α)×2

⊗ I1) + C3((x
n
− α)×3

⊗ I1)
]
−

[{
C2

(
(xn

− α)×1
⊗ Is

)
+ C2

(
C2(x

n
− α)×2

⊗ Is
)
+

3

2

(
C3((x

n
− α)×2

⊗ Is)
)}

.

{
C1((x

n
− α)×1

⊗ I1) + C2((x
n
− α)×2

⊗ I1)
}
]

+
[{

C2((x
n
− α)×1

⊗ Is) C2((x
n
− α)×1

⊗ Is)
}
.
{
C1((x

n
− α)×1

⊗ I1
}]

+Higher Kronecker Power Terms.

= C1((x
n
− α)×1

⊗ I1)− C2 ( C2(x
n
− α)×2

⊗ Is) C1((x
n
− α)×1

⊗ I1)

−
1

2
C3((x

n
− α)×3

⊗ I1) + Higher Kronecker Power Terms.

= C1((x
n
− α)×1

⊗ I1)−
1

2
C3((x

n
− α)×3

⊗ I1)

− C2( C2 ⊗ Is)((x
n
− α)×2

⊗ Is) C1((x
n
− α)×1

⊗ I1)

+ Higher Kronecker Power Terms.

( Since from Property (P6), C2(x
n
− α)×2

⊗ Is = ( C2 ⊗ Is)((x
n
− α)×2

⊗ Is))

= C1((x
n
− α)×1

⊗ I1)−
1

2
C3((x

n
− α)×3

⊗ I1)− C2( C2 ⊗ Is)((x
n
− α)×3

⊗ I1)

= (xn
− α)−

1

2
C3((x

n
− α)×3

⊗ I1)

− C2( C2 ⊗ Is)((x
n
− α)×2

⊗ Is) C1((x
n
− α)×1

⊗ I1)

+ Higher Kronecker Power Terms.
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= C1((x
n
− α)×1

⊗ I1)− C2( C2 ⊗ Is)((x
n
− α)×3

⊗ I1)

−
1

2
C3((x

n
− α)×3

⊗ I1) + Higher Kronecker Power Terms.

From the iteration scheme (See (1)) :

xn+1 − α = xn − α−

[
1

2

(
∇2f(xn) +∇2f(zn)

)]−1

∇f(xn).

=
1

2
C3((x

n − α)×3 ⊗ I1) + C2( C2 ⊗ Is)((x
n − α)×3 ⊗ I1)

+ Higher Kronecker Power Terms.

Denote en = xn − α. Then,

en+1 =

[
1

2
C3 + C2( C2 ⊗ Is)

]
e×3
n +Higher Kronecker Power Terms.

Using Lemma 3.7,

‖ en+1 ‖ ≤ ‖
1

2
C3 + C2( C2 ⊗ Is) ‖ . ‖ en ‖3 + O(‖ en ‖4).

‖ en+1 ‖

‖ en ‖3
≤ ‖

1

2
C3 + C2( C2 ⊗ Is) ‖ +O(‖ en ‖).

Since ‖ en ‖→ 0, for some large n onwards,

‖ en+1 ‖

‖ en ‖3
≤ ‖

1

2
C3 + C2( C2 ⊗ Is) ‖ + ǫ, ǫ is a small positive real number

or,
‖ en+1 ‖

‖ en ‖3
≤ r,where r is a positive real constant.

This implies that the new scheme has third order convergence. Hence the fol-
lowing result holds.

Theorem 3.9. Let f : Rs → R be sufficiently differentiable function and locally
convex at α ∈ R

s such that ∇f(α) = 0. Then the algorithm (1), with initial point
x0, which is sufficiently close to α, converges cubically to the local minimizer α

of the problem minx∈Rs f(x).

4. Numerical Result

The new algorithm is executed in MATLAB (version- R2013b) and the nu-
merical computations are summerized in Table 1. One may observe that the
total number of iterations in proposed method is less than the total number of
iterations in classical Newton method. All the steps of one of these test functions
are illustrated graphically in Fig. 1, where it is seen that the proposed process
reaches more rapidly than the existing process. CNM denotes classical Newton
method and PM denotes proposed method. The Table 1 and Fig.1 are provided
in the appendix.
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5. Conclusion

Several higher order optimization algorithms exist for single dimension opti-
mization problems in the literature of numerical optimization. Newton, Quasi
Newton and Conjugate gradient algorithms, which are used for multidimen-
sional optimization problems have second and super linear rate of convergence.
This paper has developed a cubic order iterative algorithm for unconstrained
optimization problems in higher dimension. Taylor expansion of matrix valued
function is the key concept to prove the convergence of the algorithm. Using this
logic the reader may extend the present work to develop similar algorithms for
order of convergence more than 3. In the process of developing the recurrence
relation, trapezoidal approximation is used. However one may try with other
type approximations also.

6. Appendix
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Figure 1. Comparison between CNM (black) and PM(red)
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