
J. Appl. Math. & Informatics Vol. 32(2014), No. 5 - 6, pp. 697 - 705
http://dx.doi.org/10.14317/jami.2014.697

BOUNDEDNESS IN PERTURBED FUNCTIONAL

DIFFERENTIAL SYSTEMS

SANG IL CHOI, DONG MAN IM AND YOON HOE GOO*

Abstract. In this paper, we investigate bounds for solutions of the non-
linear functional differential systems

AMS Mathematics Subject Classification : 34D10.
Key words and phrases : nonlinear functional system, h-stability, t∞-
similar.

1. Introduction

The method incorporating integral inequalities takes an important place among
the methods developed for the qualitative analysis of solutions to linear and non-
linear system of differential equations. The behavior of solutions of a perturbed
system is determined in terms of the behavior of solutions of an unperturbed
system. There are three useful methods for investigating the qualitative behav-
ior of the solutions of perturbed nonlinear system of differential systems: the
method of variation of constants formula, Lyapunov’s second method, and the
use of integral inequalities. In the presence the method of integral inequalities
is as efficient as the direct Lyapunov’s method.

The notion of h-stability (hS) was introduced by Pinto [13,14] with the in-
tention of obtaining results about stability for a weakly stable system (at least,
weaker than those given exponential asymptotic stability) under some perturba-
tions. He obtained a general variational h-stability and some properties about
asymptotic behavior of solutions of differential systems called h-systems. Also,
he studied some general results about asymptotic integration and gave some
important examples in [13]. Choi and Ryu [3], Choi, Koo [5], and Choi et al.
[4] investigated bounds of solutions for nonlinear perturbed systems and nonlin-
ear functional differential systems. Also, Goo [9,10] studied the boundedness of
solutions for nonlinear functional perturbed systems.

Received April 18, 2014. Revised May 22, 2014. Accepted May 24, 2014. ∗Corresponding

author.

c⃝ 2014 Korean SIGCAM and KSCAM.

697



698 Sang Il Choi, Dong Man Im and Yoon Hoe Goo

In this paper, we investigate bounds of solutions of the nonlinear functional
perturbed differential systems.

2. Preliminaries

We consider the nonlinear functional differential equation

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0, (1)

where t ∈ R+ = [0,∞), x ∈ Rn,f ∈ C(R+ × Rn,Rn), f(t, 0) = 0, the derivative
fx ∈ C(R+ × Rn,Rn), g ∈ C(R+ × Rn,Rn), g(t, 0, 0) = 0 and T is a continuous
operator mapping from C(R+,Rn) into C(R+,Rn). The symbol | · | will be used
to denote arbitrary vector norm in Rn. We assume that for any two continuous
functions u, v ∈ C(I) where I is the closed interval, the operator T satisfies the
following property:

u(t) ≤ v(t), 0 ≤ t ≤ t1, t1 ∈ I,

implies Tu(t) ≤ Tv(t), 0 ≤ t ≤ t1, and |Tu| ≤ T |u|.
Equation (1) can be considered as the perturbed equation of

x′(t) = f(t, x(t)), x(t0) = x0, (2)

Let x(t, t0, x0) be denoted by the unique solution of (2) passing through the
point (t0, x0) ∈ R+ × Rn such that x(t0, t0, x0) = x0. Also, we can consider the
associated variational systems around the zero solution of (2) and around x(t),
respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0 (3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0. (4)

The fundamental matrix Φ(t, t0, x0) of (4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (3).
We recall some notions of h-stability [13].

Definition 2.1. The system (2) (the zero solution x = 0 of (2)) is called an
h-system if there exist a constant c ≥ 1 and a positive continuous function h on
R+ such that

|x(t)| ≤ c |x0|h(t)h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t) ).

Definition 2.2. The system (2) (the zero solution x = 0 of (2)) is called (hS)
h-stable if there exists δ > 0 such that (2) is an h-system for |x0| ≤ δ and h is
bounded.
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Let M denote the set of all n × n continuous matrices A(t) defined on R+

and N be the subset of M consisting of those nonsingular matrices S(t) that
are of class C1 with the property that S(t) and S−1(t) are bounded. The notion
of t∞-similarity in M was introduced by Conti [6].

Definition 2.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if
there exists an n× n matrix F (t) absolutely integrable over R+, i.e.,∫ ∞

0

|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t) (5)

for some S(t) ∈ N .

We give some related properties that we need in the sequal.

Lemma 2.1 ([14]). The linear system

x′ = A(t)x, x(t0) = x0, (6)

where A(t) is an n × n continuous matrix, is an h-system ( h-stable, respec-
tively,) if and only if there exist c ≥ 1 and a positive and continuous ( bounded,
respectively,) function h defined on R+ such that

|ϕ(t, t0)| ≤ c h(t)h(t0)
−1 (7)

for t ≥ t0 ≥ 0, where ϕ(t, t0) is a fundamental matrix of (6).

We need Alekseev formula to compare between the solutions of (2) and the
solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0, (8)

where g ∈ C(R+ × Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the
solution of (8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of con-
stants formula due to Alekseev [1].

Lemma 2.2. If y0 ∈ Rn, then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.3 ([3]). If the zero solution of (2) is hS, then the zero solution of
(3) is hS.

Theorem 2.4 ([4]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for
t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution v = 0 of (3) is
hS, then the solution z = 0 of (4) is hS.
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Lemma 2.5 ([5]). Let u, λ1, λ2, w ∈ C(R+) and w(u) be nondecreasing in u
such that 1

vw(u) ≤ w(uv ) for some v > 0. If ,for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ1(s)(

∫ s

t0

λ2(τ)w(u(τ))dτ)ds, 0 ≤ t0 ≤ t.

then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ2(s)ds
]
exp

∫ t

t0

λ1(s)ds, t0 ≤ t < b1,

where W (u) =
∫ u

u0

ds
w(s) , W

−1(u) is the inverse of W (u), and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ2(s)ds ∈ domW−1
}
.

Lemma 2.6 ([2]). Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)), and w(u) be
nondecreasing in u. Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)(

∫ s

t0

λ3(τ)w(u(τ))dτ)ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.5, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ)dτ)ds ∈ domW−1
}
.

Lemma 2.7 ([10]). Let u, p, q, w, r ∈ C(R+), w ∈ C((0,∞)) , and w(u) be
nondecreasing in u. Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

(p(s)

∫ s

t0

(q(τ)w(u(τ))+v(τ)

∫ τ

t0

r(a)w(u(a))da)dτ)ds, t ≥ t0. (9)

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(p(s)

∫ s

t0

(q(τ) + v(τ)

∫ τ

t0

r(a)da)dτ)ds
]
, t0 ≤ t < b1,

(10)
where W , W−1 are the same functions as in Lemma 2.5, and

b1 = sup
{
t ≥ t0 : W (c)+

∫ t

t0

(p(s)

∫ s

t0

(q(τ)+v(τ)

∫ τ

t0

r(a)da)dτ)ds ∈ domW−1
}
.
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3. Main results

In this section, we investigate the bounded property for the nonlinear func-
tional differential systems.

Theorem 3.1. Let a, c, u, w ∈ C(R+), w(u) be nondecreasing in u and 1
vw(u) ≤

w(uv ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of (2) is
hS with the increasing function h, and g in (1) satisfies∣∣∣∣ ∫ s

t0

g(τ, y(τ), Ty(τ))dτ

∣∣∣∣ ≤ a(s)(|y(s)|+ |Ty(s)|), t ≥ t0 ≥ 0,

and

|Ty| ≤
∫ t

t0

c(s)w(|y(s)|)ds,

where
∫∞
t0

a(s)ds < ∞ and
∫∞
t0

c(s)ds < ∞. Then, any solution y(t) = y(t, t0, y0)

of (1) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (k) +

∫ t

t0

c(s)ds
]
exp

(∫ t

t0

β(s)ds
)
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.5 , β(t) = c2a(t) , k is a
positive constant, and

b1 = sup
{
t ≥ t0 : W (k) +

∫ t

t0

c(s)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2) and (1),
respectively. By Theorem 2.3, since the solution x = 0 of (2) is hS, the solution
v = 0 of (3) is hS. Therefore, by Theorem 2.4, the solution z = 0 of (4) is hS. By
Lemma 2.1, Lemma 2.2 and the increasing property of the function h, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ), Ty(τ))dτ

∣∣∣∣ds
≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)a(s)
|y(s)|
h(s)

ds

+

∫ t

t0

c2h(t)a(s)

∫ s

t0

c(τ)w(
|y(τ)|
h(τ)

)dτds.

Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.5, we obtain

|y(t)| ≤ h(t)W−1
[
W (k) +

∫ t

t0

c(s)ds
]
exp

(∫ t

t0

β(s)ds
)
, t0 ≤ t < b1,

where k = c1|y0|h(t0)−1 and β(t) = c2a(t). This completes the proof. �

Remark 3.1. Letting c(τ) = 0 in Theorem 3.1, we have the similar result as
that of Theorem 3.3 in [7].
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Theorem 3.2. Let a, b, c, u, w ∈ C(R+), w(u) be nondecreasing in u and 1
vw(u) ≤

w(uv ) for some v > 0. Suppose that the solution x = 0 of (2) is hS with a non-
decreasing function h and the perturbed term g in (1) satisfies

|Φ(t, s, y)g(t, y, Ty)| ≤ a(s)w(|y|) + b(s)|Ty|, t ≥ t0 ≥ 0,

and

|Ty| ≤
∫ t

t0

c(s)w(|y(s)|)ds,

where
∫∞
t0

a(s)ds < ∞,
∫∞
t0

b(s)ds < ∞ ,and
∫∞
t0

c(s)ds < ∞. Then any solution

y(t) = y(t, t0, y0) of (1) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (k) +

∫ t

t0

(a(s) + b(s)

∫ s

t0

c(τ)dτ)ds
]
, t0 ≤ t < b1.

where W , W−1 are the same functions as in Lemma 2.5, k is a positive constant,
and

b1 = sup
{
t ≥ t0 : W (k) +

∫ t

t0

(a(s) + b(s)

∫ s

t0

k(τ)dτ)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2) and (1),
respectively. By Lemma 2.2, we obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))g(s, y(s), Ty(s))|ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

(a(s)w(|y(s)|) + b(s)

∫ s

t0

c(τ)w(|y(τ)|)dτ)ds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

a(s)h(t)w(
|y(s)|
h(s)

)ds

+

∫ t

t0

b(s)

∫ s

t0

h(t)c(τ)w(
|y(τ)|
h(τ)

)dτds,

since h is nondecreasing. Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.6, we have

|y(t)| ≤ h(t)W−1
[
W (k) +

∫ t

t0

(a(s) + b(s)

∫ s

t0

c(τ)dτ)ds
]
, t0 ≤ t < b1,

where k = c1|y0|h(t0)−1. Therefore, we obtain the result. �
Remark 3.2. Letting c(τ) = 0 in Theorem 3.2, we have the similar result as
that of Theorem 3.1 in [8].

Theorem 3.3. Let a, b, c, u, w ∈ C(R+), w(u) be nondecreasing in u and 1
vw(u) ≤

w(uv ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of (2) is
hS with the increasing function h, and g in ( 1) satisfies∣∣∣∣ ∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ ≤ a(s)w(|y(s)|) + b(s)|Ty(s)|,
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and

|Ty(t)| ≤
∫ t

t0

c(s)w(|y(s)|)ds,

where
∫∞
t0

a(s)ds < ∞ and
∫∞
t0

b(s)ds < ∞, and
∫∞
t0

c(s)ds < ∞. Then, any

solution y(t) = y(t, t0, y0) of (1) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (k) + c2

∫ t

t0

(a(s) + b(s)

∫ s

t0

c(τ)dτ)ds
]
,

where W , W−1 are the same functions as in Lemma 2.5, k is a positive constant,
and

b1 = sup
{
t ≥ t0 : W (k) + c2

∫ t

t0

(a(s) + b(s)

∫ s

t0

c(τ)dτ)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2) and (1),
respectively. By Theorem 2.3, since the solution x = 0 of (2) is hS, the solution
v = 0 of (3) is hS. Therefore, by Theorem 2.4, the solution z = 0 of (4) is hS.
By Lemma 2.1, Lemma 2.2 and the increasing property of the function h, we
obtain

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣ ∫ s

t0

g(τ, y(τ), Ty(τ))dτ

∣∣∣∣ds
≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2h(t)a(s)w(
|y(s)|
h(s)

)ds

+

∫ t

t0

c2h(t)b(s)

∫ s

t0

c(τ)w(
|y(τ)|)
h(τ)

)dτds.

Set u(t) = |y(t)|h(t)−1. Then, by Lemma 2.6, we have

|y(t)| ≤ h(t)W−1
[
W (k) + c2

∫ t

t0

(a(s) + b(s)

∫ s

t0

c(τ)dτ)ds
]
, t0 ≤ t < b1,

where k = c1|y0|h(t0)−1. Hence, the proof is complete. �

Remark 3.3. Letting c(τ) = 0 in Theorem 3.3, we have the similar result as
that of Theorem 3.2 in [8].

Theorem 3.4. Let b, c, u, w ∈ C(R+), w(u) be nondeacreasing in u and 1
vw(u) ≤

w(uv ) for some v > 0. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution x = 0 of (2)
is an h-system with a positive continuous function h and g in (1) satisfies

|g(t, y, Ty)| ≤ a(t)w(|y(t)|) + b(t)|Ty(t)|, t ≥ t0, y ∈ Rn

and

|Ty(t)| ≤
∫ t

t0

c(s)w(|y(s)|)ds,
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where a : R+ → R+ is continuous with∫ ∞

t0

1

h(s)

∫ s

t0

(h(τ)a(τ) + b(τ)

∫ τ

t0

h(r)c(r)dr)dτds < ∞, (11)

for all t0 ≥ 0, then any solution y(t) = y(t, t0, y0) of (1) satisfies

|y(t)| ≤ h(t)W−1
[
W (k) +

∫ t

t0

c2
h(s)

∫ s

t0

(h(τ)a(τ) + b(τ)

∫ τ

t0

h(r)c(r)dr)dτds
]

, t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 2.5, k is a
positive constant, and

b1 = sup
{
t ≥ t0 : W (k)+

∫ t

t0

c2
h(s)

∫ s

t0

(h(τ)a(τ)+b(τ)

∫ τ

t0

h(r)c(r)dr)dτds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2) and (1),
respectively. By Theorem 2.3, since the solution x = 0 of (2) is an h-system, the
solution v = 0 of (3) is an h-system. Therefore, by Theorem 2.4, the solution
z = 0 of (4) is an h-system. By Lemma 2.2, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ), T y(τ))|dτds

≤ c1|y0|h(t)h(t0)−1 +

∫ t

t0

c2
h(t)

h(s)

∫ s

t0

h(τ)a(τ)w(
|y(τ)|
h(τ)

)dτds

+

∫ t

t0

c2
h(t)

h(s)

∫ s

t0

b(τ)

∫ τ

t0

h(r)c(r)w(
|y(r)|
h(r)

)drdτds.

Setting u(t) = |y(t)|h(t)−1 and using Lemma 2.7, we obtain

|y(t)| ≤ h(t)W−1
[
W (k) +

∫ t

t0

c2
h(s)

∫ s

t0

(h(τ)a(τ) + b(τ)

∫ τ

t0

h(r)c(r)dr)dτds
]

, t0 ≤ t < b1, where k = c1|y0|h(t0)−1. Hence, the proof is complete. �

Remark 3.4. Letting c(τ) = 0 in Theorem 3.4, we have the similar result as
that of Theorem 3.5 in [8].
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