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Abstract. In this article we introduce the zweier double sequence spaces

2ZI(M), 2ZI
0 (M) and 2ZI

∞(M) using the Orlicz function M . We study

the algebraic properties and inclusion relations on these spaces.
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1. Introduction

Let IN , IR and Cbe the sets of all natural, real and complex numbers respec-
tively. We write

ω = {x = (xij) : xij ∈ IR× IR or C× C},
the space of all double sequences real or complex.

Let ℓ∞, c and c0 denote the Banach spaces of bounded, convergent and null
sequences respectively normed by

||x||∞ = sup
k

|xk|.

At the initial stage the notion of I-convergence was introduced by Kostyrko,Šalát
and Wilczyński [1]. Later on it was studied by Šalát, Tripathy and Ziman[2],
Demirci [3] and many others. I-convergence is a generalization of Statistical
Convergence.

Now we have a list of some basic definitions used in the paper .

Definition 1.1 ([4,5]). Let X be a non empty set. Then a family of sets I⊆
2X(2X denoting the power set of X) is said to be an ideal in X if

(i) ∅ ∈ I
(ii) I is additive i.e A,B∈I ⇒ A ∪ B∈I.
(iii) I is hereditary i.e A∈I, B⊆A⇒B∈I.
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For more details see [6,7,8,9,10]. An Ideal I⊆ 2X is called non-trivial if I ̸= 2X .
A non-trivial ideal I⊆ 2X is called admissible if {{x} : x ∈ X} ⊆I.

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J̸=I
containing I as a subset.

For each ideal I, there is a filter £(I) corresponding to I. i.e

£(I) = {K ⊆ N : Kc ∈ I}, where Kc = N −K.

Definition 1.2. A double sequence of complex numbers is defined as a func-
tion x : N × N → C. We denote a double sequence as (xij), where the two
subscripts run through the sequence of natural numbers independent of each
other. A number a ∈ C is called a double limit of a double sequence (xij) if for
every ϵ > 0 there exists some N = N(ϵ) ∈ N such that

|xij − a| < ϵ, ∀ i, j ≥ N (see [11, 12, 13])

Definition 1.3 ([12]). A double sequence (xij) ∈ ω is said to be I-convergent
to a number L if for every ϵ > 0,

{i, j ∈ N : |xij − L| ≥ ϵ} ∈ I.

In this case we write I − limxij = L.

Definition 1.4 ([12]). A double sequence (xij) ∈ ω is said to be I-null if L =
0. In this case we write

I − limxij = 0.

Definition 1.5 ([12]). A double sequence (xij) ∈ ω is said to be I-Cauchy if for
every ϵ > 0 there exist numbers m = m(ϵ), n= n(ϵ) such that

{i, j ∈ N : |xij − xmn| ≥ ϵ} ∈ I.

Definition 1.6 ([12]). A double sequence (xij) ∈ ω is said to be I-bounded if
there exists M > 0 such that

{i, j ∈ N : |xij | > M}.

Definition 1.7 ([12]). A double sequence space E is said to be solid or normal
if (xij) ∈ E implies (αijxij) ∈ E for all sequence of scalars (αij) with |αij | < 1
for all i,j ∈ N.

Definition 1.8 ([12]). A double sequence space E is said to be monotone if it
contains the canonical preimages of its stepspaces.

Definition 1.9 ([12]). A double sequence space E is said to be convergence free
if (yij) ∈ E whenever (xij) ∈ E and xij = 0 implies yij = 0.

Definition 1.10 ([12]). A double sequence space E is said to be a sequence
algebra if (xij .yij) ∈ E whenever (xij), (yij) ∈ E.

Definition 1.11 ([12]). A double sequence space E is said to be symmetric if
(xij) ∈ E implies (xπ(ij)) ∈ E, where π is a permutation on IN .
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Any linear subspace of ω, is called a sequence space.
A sequence space λ with linear topology is called a K-space provided each of

maps pi −→ Cdefined by pi(x) = xi is continuous for all i ∈ IN .
A K-space λ is called an FK-space provided λ is a complete linear metric

space.
An FK-space whose topology is normable is called a BK-space.

Let λ and µ be two sequence spaces and A = (ank) be an infinite matrix of
real or complex numbers ank, where n, k ∈ IN . Then we say that A defines a
matrix mapping from λ to µ, and we denote it by writing A : λ −→ µ.
If for every sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A transform
of x is in µ, where

(Ax)n =
∑
k

ankxk, (n ∈ IN). (1)

By (λ : µ), we denote the class of matrices A such that A : λ −→ µ.
Thus, A ∈ (λ : µ) if and only if the series on the right side of (1) converges for
each n ∈ IN and every x ∈ λ. (see[14]).

The approach of constructing the new sequence spaces by means of the matrix
domain of a particular limitation method have been recently studied by Başar
and Altay[15], Malkowsky[16], Ng and Lee[17] and Wang[18], Başar, Altay and
Mursaleen[19].

Şengönül[20] defined the sequence y = (yi) which is frequently used as the Zp

transform of the sequence x = (xi) i.e,

yi = pxi + (1− p)xi−1

where x−1 = 0, p ̸= 1, 1 < p <∞ and Zp denotes the matrix Zp = (zik) defined
by

zik =

 p, (i = k),
1− p, (i− 1 = k); (i, k ∈ IN),

0, otherwise.

Following Basar and Altay [15], Şengönül[20] introduced the Zweier sequence
spaces Z and Z0 as follows

Z = {x = (xk) ∈ ω : Zpx ∈}

Z0 = {x = (xk) ∈ ω : Zpx ∈ c0}.
An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,

non-decreasing and convex with M(0) = 0,M(x) > 0 for x > 0 and M(x) → ∞
as x→ ∞.(see[21,22]).

Lindenstrauss and Tzafriri[22] used the idea of Orlicz functions to construct
the sequence space

ℓM = {x ∈ ℓ0 :
∞∑
k=1

M(
|xk|
ρ

) <∞, for some ρ > 0}

The space ℓM is a Banach space with the norm
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||x|| = inf{ρ > 0 :
∞∑
k=1

M(
|xk|
ρ

) ≤ 1}

The space ℓM is closely related to the space ℓp which is an Orlicz sequence
space with M(x) = xp for 1 ≤ p <∞ (c.f [23],[24],[25]).

The following Lemmas will be used for establishing some results of this article.

Lemma 1.12 ([24]). A sequence space E is solid implies that E is monotone.

Lemma 1.13 ([26,27,28]). Let K ∈ £(I) andM ⊆ N . IfM /∈ I, thenM∩K /∈ I.

Lemma 1.14 ([26,27,28]). If I ⊂ 2N and M ⊆ N . If M /∈ I, then M ∩K /∈ I.

Recently Vakeel.A.Khan et. al.[29] introduced and studied the following
classes of sequence spaces.

ZI = {k ∈ IN : {x = (xk) ∈ ω : I − limZpx = L for some L}} ∈ I

ZI
0 = {k ∈ IN : {x = (xk) ∈ ω : I − limZpx = 0}} ∈ I

ZI
∞ = {k ∈ IN : {x = (xk) ∈ ω : sup

k
|Zpx| <∞}} ∈ I

We also denote by

mI
Z = ZI

∞ ∩ ZI

and

mI
Z0

= ZI
∞ ∩ ZI

0 .

2. Main results

In this article we introduce the following classes of zweier I-Convergent double
sequence spaces defined by the Orlicz function.

2ZI(M) = {x = (xij) ∈ ω : I − limM(
|x′

ij − L|
ρ

) = 0 for some L and ρ > 0},

2ZI
0 (M) = {x = (xij) ∈ ω : I − limM(

|x′

ij |
ρ

) = 0 for some ρ > 0},

2ZI
∞(M) = {x = (xij) ∈ ω : sup

i,j
M(

|x′

ij |
ρ

) <∞ for some ρ > 0}.

Also we denote by

2m
I
Z(M) =2 ZI

∞(M) ∩2 ZI(M)

and

2m
I
Z0

(M) =2 ZI
∞(M) ∩2 ZI

0 (M).

Throughout the article, for the sake of convenience, we will denote by
Zp(xk) = x

′
, Zp(yk) = y

′
, Zp(zk) = z

′
for x, y, z ∈ ω.
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Theorem 2.1. For any Orlicz function M , the classes of sequences 2ZI(M),

2ZI
0 (M),2m

I
Z(M) and 2m

I
Z0

(M) are linear spaces.

Proof. We shall prove the result for the space 2ZI(M). The proof for the other
spaces will follow similarly. Let (xij), (yij) ∈ 2ZI(M) and let α, β be scalars.
Then there exists positive numbers ρ1 and ρ2 such that

I − limM(
|x′

ij − L1|
ρ1

) = 0, for some L1 ∈ C;

I − limM(
|y′

ij − L2|
ρ2

) = 0, for some L2 ∈ C.

That is for a given ϵ > 0, we have

A1 = {(i, j) ∈ IN × IN :M(
|x′

ij − L1|
ρ1

) >
ϵ

2
} ∈ I, (1)

A2 = {(i, j) ∈ IN × IN :M(
|y′

ij − L2|
ρ2

) >
ϵ

2
} ∈ I. (2)

Let ρ3 = max{2|α|ρ1, 2|β|ρ2}. Since M is non-decreasing and convex function,
we have

M(
|(αx′

ij + βy
′

ij)− (αL1 + βL2)|
ρ3

) ≤M(
|α||x′

ij − L1|
ρ3

) +M(
|β||y′

ij − L2|
ρ3

).

≤M(
|x′

ij − L1|
ρ1

) +M(
|y′

ij − L2|
ρ2

)

Now, by (1) and (2),

{(i, j) ∈ IN × IN :M(
|(αx′

ij + βy
′

ij)− (αL1 + βL2)|
ρ3

) > ϵ} ⊂ A1 ∪A2.

Therefore (αxij + βyij) ∈2 ZI(M). Hence 2ZI(M) is a linear space. �

Theorem 2.2. The spaces 2m
I
Z(M) and 2m

I
Z0

(M) are Banach spaces normed
by

||xij || = inf{ρ > 0 : {i, j ∈ N}| supM(
|xij |
ρ

) ≤ 1}.

Proof. Proof of this result is easy in view of the existing techniques and therefore
is omitted. �

Theorem 2.3. LetM1 andM2 be Orlicz functions that satisfy the △2-condition.
Then
(a) X(M2) ⊆ X(M1.M2);
(b) X(M1) ∩X(M2) ⊆ X(M1 +M2) For X = 2ZI , 2ZI

0 , 2m
I
Z and 2m

I
Z0

.
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Proof. (a) Let (xij) ∈ 2ZI
0 (M2). Then there exists ρ > 0 such that

I − lim
i,j

M2(
|x′

ij |
ρ

) = 0 (3)

Let ϵ > 0 and choose δ with 0 < δ < 1 such that M1(t) < ϵ for 0 ≤ t ≤ δ.

Write yij =M2(
|x

′
ij |
ρ ) and consider for all (i, j) ∈ IN × IN we have

lim
0≤yij≤δ

M1(yij) = lim
yij≤δ

M1(yij) + lim
yij>δ

M1(yij).

We have

lim
yij≤δ

M1(yij) ≤M1(2) lim
yij≤δ

(yij). (4)

For (yij) > δ, we have

(yij) < (
yij
δ
) < 1 + (

yij
δ
).

Since M1 is non-decreasing and convex, it follows that

M1(yij) < M1(1 + (
yij
δ
)) <

1

2
M1(2) +

1

2
M1(

2yij
δ

)

Since M1 satisfies the △2-condition, we have

M1(yij) <
1

2
K(

yij
δ
)M1(2) +

1

2
K(

yij
δ
)M1(2) = K(

yij
δ
)M1(2).

Hence

lim
yij>δ

M1(yij) ≤ max(1,Kδ−1M1(2)) lim
yij>δ

(yij). (5)

From (3), (4) and (5), we have (xij) ∈ ZI
0 (M1.M2). Thus

ZI
0 (M2) ⊆ ZI

0 (M1.M2).

The other cases can be proved similarly.

(b) Let (xk) ∈ ZI
0 (M1) ∩ ZI

0 (M2). Then there exists ρ > 0 such that

I − lim
k
M1(

|x/k|
ρ

) = 0 and I − lim
k
M2(

|x/k|
ρ

) = 0

The rest of the proof follows from the following equality

lim
k∈IN

(M1 +M2)(
|x/k|
ρ

) = lim
k∈IN

M1(
|x/k|
ρ

) + lim
k∈IN

M2(
|x/k|
ρ

)

�

Theorem 2.4. The spaces 2ZI
0 (M) and 2m

I
Z0

(M) are solid and monotone.
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Proof. We shall prove the result for 2ZI
0 (M). For mI

Z0
(M) the result can be

proved similarly. Let (xij) ∈ 2ZI
0 (M). Then there exists ρ > 0 such that

I − lim
i,j

M(
|x′

ij |
ρ

) = 0 (6)

Let (αij) be a sequence of scalars with |αij | ≤ 1 for all (i, j) ∈ IN × IN . Then the
result follows from (6) and the following inequality for all

M(
|αijx

′

ij |
ρ

) ≤ |αij |M(
|x′

ij |
ρ

) ≤M(
|x′

ij |
ρ

).

By Lemma 1.12, a sequence space E is solid implies that E is monotone.
We have the space 2ZI

0 (M) is monotone. �

Theorem 2.5. The spaces 2ZI(M) and 2m
I
Z(M) are neither solid nor mono-

tone in general.

Proof. Here we give a counter example. Let I = Iδ and M(x) = x2 for all
x ∈ [0,∞). Consider the K-step space XK(M) of X(M) defined as follows,
let (xij) ∈ X(M) and let (yij) ∈ XK(M) be such that

yij =

{
xij , if (i+j) is even,

0, otherwise.

Consider the sequence (xij) defined by xij = 1 for all (i, j) ∈ IN × IN .
Then (xij) ∈ 2ZI(M) but its K-stepspace preimage does not belong to 2ZI(M).
Thus 2ZI(M) is not monotone. Hence 2ZI(M) is not solid. �

Theorem 2.6. The spaces 2ZI
0 (M) and 2ZI(M) are not convergence free in

general.

Proof. Here we give a counter example. Let I = If and M(x) = x3 for all
x ∈ [0,∞). Consider the sequence (xij) and (yij) defined by

xij =
1

i+ j
and yij = i+ j

Then (xij) ∈ 2ZI(M) and 2ZI
0 (M), but (yij) /∈ 2ZI(M) and 2ZI

0 (M).
Hence the spaces 2ZI(M) and 2ZI

0 (M) are not convergence free. �

Theorem 2.7. The spaces 2ZI
0 (M) and 2ZI(M) are sequence algebras.

Proof. We prove that 2ZI
0 (M) is a sequence algebra. For the space 2ZI(M),

the result can be proved similarly. Let (xij), (yij) ∈ 2ZI
0 (M). Then

I − limM(
|x′

ij |
ρ1

) = 0 and I − limM(
|y′

ij |
ρ2

) = 0

Let ρ = ρ1.ρ2 > 0. Then we can show that

I − limM(
|(x′

ij .y
′

ij)|
ρ

) = 0.
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Thus (xij .yij) ∈ 2ZI
0 (M). Hence 2ZI

0 (M) is a sequence algebra. �

Theorem 2.8. If I is not maximal and I ̸= If , then the spaces 2ZI(M) and

2ZI
0 (M) are not symmetric.

Proof. Let A ∈ I be infinite and M(x) = x for all x = (xij). If

xij =

{
1, for i, j ∈ A,
0, otherwise.

Then (xij) ∈ 2ZI
0 (M) ⊂ 2ZI(M), by lemma 1.14. Let K ⊂ IN be such that

K /∈ I and IN −K /∈ I. Let ϕ : K → A and ψ : IN −K → IN − A be bijections,
then the map π : IN → IN defined by

π(k) =

{
ϕ(k), for k ∈ K,
ψ(k), otherwise,

end πk =

{
ϕk, for k ∈ K,
ψk, for k ∈ N-K.

is a permutation on IN , but (xπ(i)π(j)) /∈ 2ZI(M) and (xπ(i)π(j)) /∈ 2ZI
0 (M).

Hence 2ZI
0 (M) and 2ZI(M) are not symmetric. �
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5. M. Gürdal, M.B. Huban, On I-Convergence of Double Sequences in the Topology induced
by Random 2-Norms. Matematicki Vesnik, vol. 65, no. 3, pp. 113, 2013.

6. Ayhan Esi and Bipan Hazarika, Lacunary summable sequence spaces of fuzzy numbers
defined by ideal convergence and an Orlicz function , Afrika Matematika November (2012),
1-7.

7. Ayhan Esi and M. Kemal zdemir, 0-strongly summable sequence spaces in n-normed spaces

defined by ideal convergence and an Orlicz function, Mathematica Slovaca 63(4)(2013),
829-838.

8. Ayhan Esi and Bipan Hazarika, λ-ideal convergence in intuitionistic fuzzy 2-normed linear
space, Journal of Intelligent Fuzzy Systems: Applications in Engineering and Technology,

24(4)(2013), 725-732.
9. Ayhan Esi and S.K Sharma, Some I-convergent sequence spaces defined by using sequence

of moduli and n-normed space,Journal of the Egyptian Mathematical Society, 21(2)(2013),

103-107.
10. Ayhan Esi, Hemen Dutta and Alias B Khalaf, Some Orlicz extended I-convergent A-

summable classes of sequences of fuzzy numbers, Journal of Inequalities and Applications,
2013.



Zweier I-Convergent Double Sequence Spaces Defined By Orlicz Function 695
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